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Abstract. The Voronoi domains, their duals (Delaunay domains) and all their faces
of any dimension are classified and described in terms of the Weyl group action on
a representative of each type of face. The representative of a face type is specified
by a decoration of the corresponding Coxeter-Diynkin diagram. The rules of domain
description are uniform for voot lattices of simple Lie groups of all types. An expticit
description of the representatives of all faces is carried out for the domains of root
lattices of the four classical series and for the five exceptional simple Lie groups. The
Coxeter-Dynkin diagrams required here are the diagrams exiended by the highest short
root. Each diagram is partitioned into Iwo subdiagrams, one describing completely a
d-face of the Voronoi domain, its complement completely describing the dual of the
d-face. The applicability of our classification method to generalized kaleidoscopes is
explained.

In memory of Hans Zassenhaus

1. Introduction

The purpose of this article is to study the Voronoi domains of the root lattices of
the simple Lie groups of all ranks »n > 1, to classify and to describe their faces of all
dimensions ¢ (d-faces) for 0 € d < n, and to give a similar description of their duals
or Delaunay domains [1, 2].

In physics literature, particu]arly when one is concerned with dimensions not
grcd[er than UIICC, these domains are aiso calied ngnCI—DCILL cells and Briliouin
zones. Other occasionally used names are proximity cells and Dirichlet domains.

In general, for a lattice T’ in R™, the Voronoi domain, or cell, of a lattice point
a, denoted by V(«), is the set of all points of R™ that are at least as close (0 « as
to any other point of T'.

Voronoi cells appear naturally in problems of crystallography, solid state physics,

rrding thanry and mnet raranthy in tha thanre nf anacieruvetale Cinr intoract in tha
CUGLRE wavUly alid, mast iy, i Glv ULy O QUaSillySiain. Ul HCTost i wic

Voronoi cells of root lattices was awakened by the work of P Kramer er af [3], in
which these cells and their duals play a crucial role.

Information about the Voronoi cells of root lattices of dimension greater than
three is scattered about the literature. A detailed account of the lattices A4,, D,, and
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Dy is given in a series of papers [3, 4). The most detailed account of the Voronoi
cells of root lattices appears in the excellent paper of Conway and Sloane (S, 6],
where the direct motivation is coding theory and sphere packing. Much information
on four-dimensional crystallography is found in [7, 8]. For an informative introduction
to the importance of Voronoi cells in the theory of lattices see [9).

In this paper we start from the result of Conway and Sloane (equation (2.28))
in the case of Voronoi cells and from the Wythoff prescription (equation (4.44))
for Delaunay cells and develop a simple graph-theoretical method of simultaneously
classifying the facet structure of both cells. The method also gives explicit information
on the symmetries of each facet, its vertices, and other subfacets. In spirit it is similar
to the methods of Coxeter [10] and indeed it relies on the affine Coxeter~Dynkin
diagrams and the remarkable properties of the affine Weyl group and its fundamental
region.

The classification of the faces and facets of the Voronoi and Delaunay domains is
encoded in certain ‘decorated’ versions of these same diagrams. The facet structure of
the Voronoi cells is described by a series of decorations of the corresponding Coxeter—
Dynkin diagram and an algorithm for proceeding from d-facets to (d—1)-facets. The
dual (Delaunay) cells are described simultaneously from the same diagram although
the interpretation of the nodes of the diagram referring to facets of the Voronoi and
Delaunay domains is different.

Since the root lattice of a simple Lie algebra is, in fact, generated by its short
roots, a multi-length root system gives rise to Voronoi and Delaunay cells that also
occur in the analysis of the root system comprised by its short roots (this is clearly
visible in the A, and G, case in figure 1). Our method works using both the diagrams
of the full root system and its short root subsystem. It is interesting and revealing to
see how the information given in each case both coincides and differs. The differences
are due to the differences in the Weyl groups and how much of the facial symmetry
is carried by these groups.

Of particular interest in the classification are the vertices of the Voronoi domains,
sometimes called the holes of the root lattice. Locally these are the points of R™ most
distant from all the nearest lattice points. In general, a root lattice has several types
of holes as classified up to equivalence by the affine Weyl group. More precisely,
there are n, 1, 2, 3, 2, 2, 2, 1, 1 W-orbits of holes respectively in the root lattices A
(n21),B,,(n22),C,,(n23), D,,(n24), Es E, Eg, F,, and G,. Il the
Weyl group is extended by the symmetries of the Coxeter-Dynkin diagram, then the
number of different types of holes in the root lattices A, ,(n 2> 2), Dy, D, ,(n 2 5),
and E; reduces to [(n 4 1)/2], 1, 2, 1 respectively.

We assume that the reader is familiar with the properties of root and weight
lattices of the simple Lie groups, their classification, extended or affine Coxeter—
Dynkin diagrams, the affine Weyl group, etc. A basic reference is [11].

In section 2 we recall some pertinent facts of the theory, setting up the notation
and fixing the terminology.

Section 3 contains the elementary examples of A,, B, and G, of two-dimensional
root lattices and serves to orient the reader to the way in which we relate facets to
decorated diagrams and to illustrate the concise way necessary to provide the infor-
mation about the domains in the general case. The last example, C,, demonstrates
how all details about the faces can be obtained from the classification that we provide
here.

Section 4 contains the theoretical justification of the method. Section 5 contains
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our results about the Voronoi and Delaunay domains in A, B,, C,, D,, E;, E:,
E;, Fy and G,. The main results of the article are summarized in tables 4-12.

In section 6 we briefly indicate how our method is applicable to generalized
kaleidoscopes in spherical, Euclidean or hyperbolic spaces. We confine our discussion
to a few examples. The generalization is fullly developed in a subsequent paper [12].
It provides a new proof of the classification described here which applies to any W-
orbit of points in a generalized kaleidoscope and allows us to extend our results to
include the classification of Voronoi and Delaunay cells of all the weight lattices of
the semi-simple Lie group.

After this manuscript was submitted we were made aware of [6). This paper
contains a case-by-case description of the Voronoi and Delaunay cells of the root
and weight lattices of A,, D, , Eg;, E;, E;. It is, however, very different in spirit
from our paper. The conclusions of [6] clearly reveal the unity of the description
of Voronoi and Delaunay domains (and to a lesser degree their facets) in terms of
Coxeter—Dynkin diagrams. However, the fundamental duality between facets and dual
facets is not observed. Nor does the proof, which depends on explicit knowledge of
each lattice individually, reveal the underlying unity. In particular the extension to
other W -orbits in Euclidean and non-Euclidean spaces is not within the scope of [6].

For convenience we summarize here our algorithm for classifying the Voronoi and
Delaunay cells.

We assume we have a root jaitice (J generated by a root system A whose Coxeter—
Dynkin diagram is called CD and whose Weyl group is W.

(i) Dualize CD, form the extended dual CD, and redualize. Call the new diagram
N and write the extention node as (©) (see the root lattice diagrams in table 1).

(ii) At each step N is partitioned into two subgraphs

N =N¢, + N34 (1.1)

Nodes of N _ are drawn as boxes, nodes of N2;% are circles. N&, has d + 1
nodes. The subgraph N3¢ is always connected and always contains (. Every such
partition describes a different d-dimensional face of V(0) and its dual of dimension
n —d. In spite what the notation suggests there may be several permissible partitions
of N for a given d. These give rise to different W-equivalence classes of facets.

(ili) Boxes which are not joined by an edge of N to any node of Ng;,d are
marked with a cross, x.

(iv) The subdiagram N . stands for the properties of a d-face of the Voronoi
cell V(0) and also its W-orbit. The d + 1 boxes of the N . stand for vertices of a
d-simplex S¢ (a d-face of the affine fundamental chamber) and the crosses in boxes
stand for the reflections that generate the group of symmetries G* (in the Weyl group
W) of the d-face. The full d-face is the union of the images of $¢ under G°.

(v) The subdiagram Se‘,d stands for the (n — d)-face of the Delaunay cell that
is dual to the cell of Voronoi given by Ng . In particular for d = 0, the subgraph
NS contains a single box and stands for a vertex of V(0), while Nj,, describes the
corresponding Delaunay cell.

(vi) When d = n, we have NT . = N; all nodes are boxes and all but the
extension node are decorated by the cross. The diagram describes then the properties
of the Voronoi cell V(0) centred at the origin (see table 1), When d = —1, we have
N2F1 — N all nodes are circles, only the extension node is dotted. The diagram

Del A
describes the properties of the whole root lattice (see table 1).
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Table 1. Lattice diagrams with numbering of nodes, decorated diagrams of the Voronoi
cell V(0) with marks and orders of the Weyl group.

Type Root lattice diagram V(0) diagram Wey! group
with numbering of nodes with marks order

a, T3y T (1)

nz2 1
B, OO - —OF0 2"nl
n22 1 2 ol 1 1 2 2 1
] [ )
c, oﬁ@_ - —ORO 2"n!
>3 1 2 o-l o 1 2 2 2
L1} ol 1[] (<11
D, 0—8— ,8_0 I—=— 2"'n!
nz4 12 o2 o 1 2 2 1
] 0 2
Eq o—o—gg—o 2'3's
1 2 3 4 B 1 2 3 2 1
7 X 2
E, @—o—o—g—o-o—o e O R 2357
01 2 3 4 5 & 3 4 3 2 1
8 3
By @-o-o—o—o—g—o-o l—l—l—l—I—=—I—l = 2M3%5%7
0 1 2 8 4 65 6 7 1 2 3 4 5 6 4 2
1 2 3 4 0 2 4 3 21 7.9
F, OO0 0—® ==k, ] 2'3
G, OFO—® B ] 2%3
1 20 3 2

(vii) Lower-dimensional facets of V(0), their duals, and the multiplicities of
their occurrence are determined by successively replacing boxes from N, by circles
(subject to the conditions (ii) and (iii)). If there are several choices for replacement
of boxes by circles, each choice leads to a different W-equivalence class of facets and
their duals.

Moreover, the algorithm (i)-(vii) can be used to find the facets of facets of
Voronoi and Delaunay cells and their multiplicities (see section 4.7). Onc simply
applies the algorithm to the corresponding subgraph NZ,, or N33 q partitioning the
subgraph into two parts (this requires a convention on how to draw two types of
boxes or circles) subject to the requirements of the algorithm, etc.

2. Notation and setting up the problem

Let A = (A;;)1¢:k¢n De an indecomposable Cartan matrix, V' and V vector spaces
of dimension n over R, and Il and IT are bases of V and V respectively,

I={o,ay,...,0,} = {&,,é&,,...,8,}. 2.1)
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There is a unique bilinear form

{-,'): VxV SR (22)
defined by

{a;,&)=A

j (2.3)

i

Let W denote the Weyl group of the Cartan matrix A. The group W is generated
by its elements r,,...,r,,

W= (r,...,r. ). (2.4)
It acts faithfully both on V and V. One has

oy = o — Aja (2.5a)

by =6y — A dy. (2.55)
Here r; is the reflection in the hyperplanes

Hy, = {z € Vi(@, &) = 0} (26a)
or

H, ={ze¢ V {a;, ) = 0} (2.6b)

according to which side of {, .} we look at,
The bilinear form {-, -} is W-invariant:

{wv, wv’) = (v,v')

forall we W, forall (v,v') €V x V.
The W -transforms of IT and II,

A:=WII and A:=wWII (2.6)

are the finite root systems defined by I1 and I1; IT and I1 are the corresponding
simple roots. The unique positive definite symmetric W-invariant bilinear form,

Gl): VxV—R (2.7)

on V is defined by the two properties

2({a; | o
2eilay) _ Ay (2.84)
(a,‘ | 0‘;‘)
(vl Y =2 for all long roots. {2.8h)
(x|a)=2 Ior all long root { )]

The bilinear form (- | -) defines a Euclidean metric on V'

d(z, )= |z —yl=(z—y |z~ y)*/* (2.9)
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relative to which each r; is an orthogonal reflection.

It is useful to fix, once and for all, a numbering system for simple roots. We
adopt the Dynkin numbering which is shown in table 1 together with the orders of
the Weyl groups. .

Using (- | -) we identify V and V so that

2a

s 1
Loy |

AN (2.10)
CEJ) M

In general, there is a bijection
T A— A (2.11)

that is W -invariant and satisfies

_2x s (2.12)
(a| )

under the isomorphism of V and V. We define & € V for all non-zero o € @ by
(2.12).

Relative to II, the root system A has a highest root £ and a highest short root
£,- (If A has only one root length then £ = £)). Then £ and £, are respectively the
highest short root and the highest long root of A.

The lattices generated in V by A and A are

Q = EZQ'- = Z Za'- (213)

izl a,;short

o
i
]
=3
—Q‘
I

S Za,. (2.14)

i=1 & short

x

he second equalitie
W-invariant.

Our task is to describe the structure of the Voronoi cells of Q. By definition, for
a € Q, the Voronoi cell V(a) around « is

s are both weill known and easy to show. Both @ and Q are

=

Via)i={zeV|lz—-alg|z- 3|, foral g€ Q}. (2.15)

Obviously V(a) = V(0) + a for all « € @ and V(0) is W-invariant. We
wish to determine the W-orbits of the vertices, edges, 2-facets, ..., (n — 1)-facets
of V(0). We will reserve the term ‘face’ for the (n — 1)-facets of V(). We make
the convention that facets are closed, so a facet contains various subfacets of lower
dimension. We will see that our algorithm for extracting the information will begin by
As we have pointed out, the same Voronoi cells may be determined by different root
lattices since it is only short roots that are involved. However, the Weyl groups are
different and so we obtain different information about the symmetrty of the facets by
using different root systems.
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An important cellular decomposition of V' associated with the Voronoi cells is
the decomposition into dual cells. If f is a facet of a Voronoi cell V(3) then the
(metrical) dual f* of f is the convex hull of the lattice points 8 € Q for which f is
a facet of V(). Equivalently, f* is the convex hull of the lattice points 3 that are
closest to f. We will obtain a description of the dual facets f* simultaneously with
that of the facet f.

The extended Weyl groups are W « Q and W x Q, where the action of W on
Q) and { are given by (2.5). The action of

W, =Wx@ (2.16a)

on V (which is the only one we have need of here) is given by letting Q act by
translation on V:

(w,q): = +— wz + q. {2.16b)
The affine Weyl group W x Q is generated by r,,r,,...,r, and by an additional
affine reflection
rg i@ — x4 (1 —{z,E))E,

2
r0w=x+{l—-f—-(;~:—ll—§-§q‘l¥fs. (2.17)
\ AR TR Y ¥

Note that defining
T z— z —{z,£,)E, (2.18)
we have 7; € W and
reTe: & — 2+ &, for all (2.19)
i.e. ryTp is the translation by £, € Q. The region F,
Fi={zeV|{z,&)20,i=1,2,...,n, and {z,£) <1} (220)
is a fundamental region for the action of W, on V. In fact [B, ch V, section 3]
(%) Uwewc wF =V,

(iyif € Fwe W, then wz € F & wz ==z,
(iii) if & F then Stab,, (z) is generated by the reflections in the walls of F

containing x.

Define the fundamental weights w,,w,,...,w, €V by
(w;r&;) = & (2.21)
and the weight lattice P,
P=) Zuw,. (2.22)
=1
The coefficients {my,m;,...,m, } in
m
& =) mé; (2.23)

i=1
together with m, = 1 are the marks of the dual root system A. Their values are
shown in table 1. For all i, we have m; € Z .
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Lemma 1. F is the convex hull of 0 and

{_‘5’_1_ Wy w_} 2.24)

¥ k)
my my m,

Proof. {w,/fm ,w,fm,,...,w,/m_} is a basis of V. Let z € V be written as
r = Ec,-w,-/m,-. Then

(z,8;) 20> c; 20.

(x,fs)él4=>Z1—i—"-m,-(w,-,d,-)=2c.-sl. (2.25)

We will be primarily interested in the boundary F of F,

Fy = <—°3-1-ﬁ—“3~"—> . (2.26)
my Ty My f conv
It lies in the affine hyperplane
Hy:={rxeV|{x,§{)=1)}). (2.27)

Given two subsets S and T of V, we say that § supports T' (and T supports 5) if
the affine spans of S and T are equal. For example F; and H support each other.
In terms of F we have the following description of V(0) due to Conway and
Sloane [5). We include a proof here because it is an essential step in our argument.

Lemma 2. [5, ch 21}

V(0)=WF:= | wF. (2.28)
weW

Proof. Let z € F. We claim that forall o € Q, [z| < |z — al

Indeed, since whenever a reflecting hyperplane /1 separates z and o we have
|z —r, a| < |z — af, we can assume o € F. However, by (2.20), Qn F = {0}, so
a=0

Now let & € V(0). To prove that ¢ € W F we may assume that z lies in

C:={zeV|(z,&)>0} (2.29)
which is a fundamental domain for the action of W on V. Then for all 3 € @,
|z} € jz ~ B} = (=, 8) < 1.

In particular, (z,£,) < 1==2 € F. Thus V(0) C WF. Converselyzc € F =z €
V{(0) and so we see that WF < V(0). a
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A concise way to provide essential information about V(0) is by means of the
decorated diagrams of table 1.

During the subsequent computations one frequently needs to use the following
relations,

a=Aws =Y Ajw; (2-30)
w=Ala=w; = L(A"l)u 5 (2.31)
Ty =wk—6‘-kak i,j,k=1,2,...,‘n (2.32)

which are simple consequences of (2.5), (2.8), (2.10) and (2.21). The list of Cartan
matrices A can be found in many places [11, 13, 14], their inverses are found for
e}mmnle in l141

The Euler formu]a [10] which relates the numbers N, of d-facets,

;s
.-..

Nd =1-(-1)" (2.33)

-9
It
o

offers a useful verification of our counting of the facets of Voronoi and Delaunay
cells.

3. Introductory examples: A,, B,, G, and C,

In this section we consider two types of examples. The first are the two-dimensional
root lattices of the simple Lie groups A,, B,(= C,), and G,. Their Voronoi domains
are most easily described by simply drawing them (figurel) using only the definition.
This clementary situation allows us to illustrate our concise notation for the same
results; in particular, the two interpretations of the decoration of the diagram required
for description of the facets and their duals. In each successive case we adopt more
of the view point that is used in the rest of the paper.

Our second type of example is C,. We use it also further on in section 4 and also
in illustrating the generalized kaleidoscope in section 6. In this section its purpose
is to explain how a description of the faces of the Voronoi domain V'(0) and their
duals is provided in our notation for a situation where the results cannot easily be
obtained in another way, and how further details of the structure of the faces can be
inferred from it if one desires. -

3.1. Example A,

The vertices of V(0) (see figure 1) split into two W -orbits. We provide a represcnt-
ative of each orbit as the following decoration of the A, Coxeter-Dynkin diagram.

S:}) e w, and 8% = w,. (3.1)

The full set of V(0) vertices (O-faces) is then obtained by the action of (2.32) of W/
on the two representatives:

Wy MWy = —wy Wy TalMWw) = —uh

Wo i Tywy = Wy — Wy PyTawy = —Ww,. (3.2)



5098 R V Moody and J Patera

Figure 1. The roots and the Voronoi domains V(0) centred at the origin of the root
lattices of the simple Lie groups Az, Bj, and G2. The circles denote roots, dotted circle
is the origin, dotted boxes are vertices of V{(0); a1 and a; are the simple roots; wi
and we are the corresponding fundamental weights; v, r1, and r; indicate the broken
reflection lines far the action of the ggnermino elements (also denoted rn. 7. ™) of the

RIS == A il v SRR pieiREaRiil -ttt \NERaR RRRRRRALL U T TE S Y

affine Weyl group; the shaded triangle is the fundamental region; £ or £, is the highest
short rool; an open box indicates an awuxiliary interior point of a face of 17(0) used in
our description of the face.

There is only one W-orbit of the edges (1-faces) of V(0). We present it as the
decorated diagram

8% <= [wy,w,] := line segment connecting w, and w,. (3.3)

The full set of six 1-faces of V(-O) is then obtained by letting the Weyl group act on
[wy,w,]. More precisely, we find the following distinct 1-faces using (2.32):

[wy, wy] rlwi,ws] = [=w, + Wy, Wy rylwy, wy] = [wy,w —wy)
ror(w,w,] = [—wq,wy — wy) rrglwsws] = {~wy + wy, —w] 34)

rirTy Wy, wy] = Ty To{wy Wy} = [—wy, —w].
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The dual of a face, given by the nearest point of the root lattice to the face, is
visible on figure 1. In order to determine the dual of a vertex, say w, (diagram (3.1}),
one has to use the reflection r,, specified by the node O of the diagram, and the
affine reflection r; (see (2.17)) given by the node (%), and to apply them to the origin
0. The dual face to w, has as its vertices the images of 0 under the group generated
by the two reflections: 0, r,0 = { = «a, + a,, and ré = a;. One finds similarly the
dual of w, as the equilateral triangle [0, r,0, r,r;0] = [0,£, a,).

Similarly to get the dual of the edge [w,,w,] we apply the affine reflection rg
corresponding to (©) to the origin obtaining [0, £].

3.2. Example B,

The numbering of the nodes of the diagram

12

stands for indexing the simple roots o, a,, the fundamental weights w, ,w,, and the
elementary reflections r, r,.

There is only one W-orbit of vertices of V(0) (see figurel). We provide its
representative point w., as the following decoration of the B, (equivalently C,)
Coxeter—Dynkin diagram.

Oze@==1 (3.5)

The extension node () stands for the origin and for the affine reflection r,
(see (2.17)). This diagram should really be thought of as two subdiagrams

OO and [] (3.6)

The box stands for w, (it is its position in the B, diagram). The full set of four
vertices of V'(0) consists of

Wy oy = —wy + Wy PT oWy = Wy — Wy TyPToWe = —Wy (3.7)

as follows from (2.32). The dual cell to the vertex w, is described by the complemen-
tary piece of the diagram, ie. the first diagram of (3.6). This stands for the region
(square) whose vertices are the translates by the group generated by =, and »r; of ()
(i.e. the origin 0):

0 r0 =& =0, +a, ré = a, roog = € = a; + 2ay. (3.8)

This is confirmed by looking at figure 1.
The edges of V{0) are represented by the decorated diagram

(3.9)
which again may be thought of as
® and (3.10)

There are several new features here. The two boxes indicate that the edge is being

made out of w, /2 and w,. (The fraction 1 here is important and we will explain
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how it can be easily read from the diagram later. However, the boxes stand primarily
for w, and w,.) The cross indicates that reflection r, must be applied to w, to fill
out the edge, ie. the edge is [w,, r,w,] which contains w, /2 as an interior point
(actually the midpoint) as one can see on figure 1. The empty box standing for w, /2
indicates exactly that w, /2 is interior to the edge.

The action of W on the edge [w,, ryw,] according to (2.32) then provides all the
1-faces of V(0). We have

[wa, rown] = [wy, —wy - wi]

71wy, rpwy] = {wy, 7y rw,] = [wo, wy — wy]

a7 [was Taws] = [1yws, Ty Tawy] = [—wy + wy, —ws]

17Ty [wys Tyws] = [y 179w5, Tor Tows] = [wy — wy, —wy]. (3.11)

To determine the dual facet to the edge [w,, ryws] wWe turn to the complementary
diagram (). It indicates that we apply the group {1, r,} generated by r; to the origin
(© thereby obtaining {0, r,0] = [0, £,] as on figure 1.

3.3. Example G,

We illustrate this example in terms of the algorithm and diagramatic notation that
make up our general method,
Beginning with

Ce=0) (3.12)

1 2

(the numbers refer to the indexing of the simple roots oy, o, and fundamental
weights w,, w, and the reflections r,, r,), we dualize the graph

CRO (3.13)

O%0-® G149

indexing the new node by 0 and indicating it by the special symbol ().

We next 2-balance this graph [13]. This means assigning positive intcger marks
m;,t = 0,1,2, to the nodes subject to the following conditions:

(i) For each 4, 3 m; /m; = 2, where the sum is over all arrows (with multiplicity)
from node j to node :. (Single bonds count as one arrow in each direction, the
multiple bonds in (3.14) count as three arrows in one direction and one in the other.}

(i) ged{mgy, m;, m,} = 1.

Thus we have the unique 2-balancing

OO—® (3.15)

2 1
Finally we redualize

9650 (3.16)



Voronoi and Delaunay cells of root lattices 5101

The vertices of the fundamental simplex F which is used in the construction are given

as
0.2, 22} = o2 2). o

Our algorithm begins at the maximal dimension facets (faces) which in this case are
the edges. We start with

== O] (3.18)
indicating that we use the line segment
W Yo
[ % ] (3.19)
and decorate the diagram to
(3:20)
which we should think of as
and ® (321)

indicating, as in B,, that the edge is obtained from (3.19) by applying the reflection
r,, and that w, /2 is an interior point of the edge. In general, a cross is put in each
box that is not adjacent by an edge of the diagram to any node O or (). Thus we
have the edge

2] = (2% =

and the remaining edges are determined by the action of the Weyl group elements
(reflections) r, and r, on this edge.

As the dual to the edge (3.22) we have the 1-face determined by the complemen-
tary graph which in this case is (©). Thus we get the edge

[0,7,0] = [0,&] (see figure 1).

To obtain the vertices of V(0) we replace by (O in (3.20) any box not marked by a
cross (equivalently adjacent to a circle node). Here there is only one choice

(BO—© (323)
which we think of as
0 ad O—® (3:24)

Thus the vertices of V'(0) are the W-translates of w, /3. The remaining five vertices
of V(0) are obtained from w, /3 by the action of (2.32) of the Weyl group elcmcnrs
iy TaTy, Ty TaTy, ToTyTyry 80d 7y vy ryr giving respectively —3w, + wy, 2w, —
Wy, —Fw, +w,, swy —w, and —w;.

The dual cell to the vertex w, /3 is the convex hull (triangle) of the three vertices

(0,740, r;7,0] = [0, &, &y + ay).
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3.4. Example C,

The Voronoi domain V(0) of the root lattice of the symplectic group C, of rank 4 is
the same as that of D, (the short roots of C, form a root system of type D,). Thus
we get the same classification of facets and dua) facets from either starting point.
There is a similar correspondence for C; and D; = A;. We do not dwell on this
correspondence here since it is pointed out later for general n > 4.

The general method for describing of d-faces and duals for V{8) is given in
section 1. The results for all C,,n > 3, are given in section 5.3, table 6. The
particular exampie of C, is used to illustrate the general development of the algorithm
in section 4. The reader may wish to see how the classification goes in this case by
skimming through section 4 at this point. Qur aim here is limited to showing how to
extract more information about the facets and their duals once the classification has
been carried out (cf table 2).

Table 2. Representative faces of the Voronoi domain V'(0} (subdiagram of boxes) of
the root lattice Cy, their multiplicities in V(0), and dual faces (subdiagram of circles),

Face Diagram #

n
V(o) 1
O
3-face 24
()
B
0

2-face 96
1-face 32

1-face D—g—CﬁD 64
0-face D—g—OiO 8
)

Oface  O-O-O=O 16

There are two classes of vertices of V(0) in the case of C,

Dg—o:co and O—g—o:ﬁ:l (323)

The first diagram gives rise to a W-orbit of eight vertices generated from w;:

wh mw; = —wy F Wy
PTiw; = —Wy + W TaraTiw) = —wj + wy
TyTaTaTiw) = Wy — Wy TgTyTaTeT W) = Wy — Wy

TyTaT Tl =  w) — Wy T TpTaTyTaTy MW = —w,. (3.26)
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Similarly one finds 16 distinct vertices represented by the second decorated diagram
for 2w, These are

+ fw, + (wy ~ w,) @ (wy — w3+ tw,) + (w, — %‘-"4)
+ (W) - w, + Jwy) F (W) —wy — w5 — jwy) (3.27)
® (v + jw,) *+ (W) — ws + w,).

The four-dimensional dual cells D(w,) and D(}w,) are represented by the sub-
diagrams of (3.25)

O-0O-C¢0  and O—%—O (3.28)

Each stands for the convex hull of the orbit of the point indicated by the dotted
circle (ie. the origin here) by the group generated by the reflections corresponding
to all the circles. This is the well-known Wythoff construction (see section 4.7).

According to [10, 11.7] these diagrams create the four-dimensional crosspolytope
(generalized octahedron) and the half-hypercube (obtained by keeping only alternate
vertices) respectively (see table 3). Explicitly, the vertices of the crosspolytope D(w,)
are the origin 0 and

ro0=§( =w, =0+ 20,4+ 2a5+ o,

Powyp = ) + ag + 203 + @y = w; —wy + Wy

TaPoly = O + ap + Qg+ 0y T Wy — Wyt wy

Tyl == 0y + Qg - (g = Wy Wy — wy (3‘29)
TaTyTaToWy = ) + ay = Wy + Wy —wy

TPy TaTowy = @) = 2w, —hy

PoPaTaTaTaolw, = 20y + 20,y + 203 + @, = 2w,

and for the half hypercube D(3w,) the origin 0 together with the following seven
vertices

r0 =wy, = oy + 205 + 205 +
rowy = 0y + oy + 20+ oy Swp —wy +wy
rowy T oy F oy 2o+ 0y = wy —wy Fwy

TyTyWy = ) + Gy + 20, + a4y = wy — w3y + wy

(3.30)
rryw, = oy + 2054+ a0, = —wy + wy
T TaTywWy = 0g + 20 + oy = ) — Wy ~ Wy Wy
ToTTalywly = Gy + ay = —wy + Wy

TP Palowy = —wy — Wy + Wy,
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Table 3. Wythoff construction. Diagrams have n nodes with the exception of the last

two.

Diagram Name Coxeter symbol
G—O—O— — —0O-0 (n+1)-simplex |
@O - —O-00 n-cross polytope B,
O—-O—  —O—® n-cube 1
0_8_0_ - =00 alternate vertices of an n-cube by,

0
O—O—0— - —0O—® n-cross polytope 8,

@—0—8—0—0 Gosset’s 6-dimensional figure 2
@—o—o—g—o—o Cosset's 7-dimensional semiregular figure 3,

The 1-faces (edges) of V'(0) are classified by the two diagrams

8 and : (3.31)
O—O—1 BAX]

The first gives rise to 64 WW-translates of the representative edge [w,,3w,}. The
second diagram represents 32 translates of the edge [w,, 74 5ws) = [Fwy, wy — swyl.
Note that the first type of edge has its ends on different W -orbits while the second
type has both ends in one orbit.

The dual faces of dimension 3 are regular tetrahedra C, whose vertices are

0 £, rof, rarel, (3.32)

and

0 £, €, ryrafy (3.33)

respectively.
There is only one W-orbit of 2-faces.

— Q v (3.34)
O RAX
These are triangles, the representative one being the convex hull of [w,, Tw,, 4 3wy)-
The dual is the triangle whose vertices are [0, 7,0, 7,7, 0].

Finally there are the 3-faces all represented by the 3-face

O

[ XX
In order to-find its vertices we use the stabilizer of the face, generated by the
reflections r,, 4, r, indicated by the crossed boxes of (3.35), on the representatives
of the vertices given in (3.25). These are

(3.35)
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and
1
7We

Tagwy = wy = 794 (337

1 —_ _ 1
TaTyqWy = Wy — Wy + 5y
L, — 1
TaTaTyaWy = Wy — 50,

of the octahedron. Its dual is the segment [0,7,0] = [0,£,].

By continuing further changes in the decoration of the C, diagrams, one gets
from (3.35), as the next step, the diagram of V(0) shown in table 2. The symmetry
group of the diagram, given by the crossed boxes, is now W(C,). Similarly, we can
go one step further in the opposite extreme replacing the single box in (3.25) by O.
The result is the diagram (see table 1} for the root lattice C, generated from the
origin (O by the reflections ry, r,, ry, 3, r, applied to it.

It remains to explain how one determines the number of faces given by a decorated
diagram. It is equal to the size of the corresponding Weyl group orbit which is in
turn equal to the ratio of the order of the Weyl group of C, to the order of the
stabilizer of the open boxes of the decoration. One reads immediately the necessary
information from the diagrams:

IW(CH _ 2441

0-faces: e = Fa =S (3.38)
:VH‘;((E:;: = 244'!4! =16 (3.39)
1-faces: :ggi‘zgi = 243',_4! = 64 (3.40)
A = = G4
Afaces: IW(%E%EAI)I =5 = (42)
3-faces: W(Cy)| = A gy (3.43)

IW(AD|IW(C,)| ~ 2222

All the Weyl group orders are found in table 1.

Similarly we could have established the number of vertices of the four-dimensional
dual to the vertices of V(0) prior to the computation (3.29) and (3.30). Regarding
the subdiagrams (3.28) of (3.25), we find the size of the W-orbit of () in each case:

IW(C)| _ 2%-4!
[W(Cy)| ~ 2531

|W(D )Y _ 234!
WA =t ~ o B

and

As the final part of the example let us ask the following question. Given a vertex,
say w,, of V(0) of C,, how many 1-, 2- and 3-faces share that vertex? For that,
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we need to apply the stabilizer of w,, which is the Weyl group W (C,) generated by
T3, T3, Ty, 10 the representative face containing w, (see section 4.6 for more derails),
Hence the size of the W(C;)-orbit of the edge [w;, jw,] is the ratio of the orders
of respective stablizers.

IW(Cy)] _ 283!
(W4, ~ 3!

= 8, (3.43)

The second type of 1-face does not contain w, as can be seen in (3.31). Similarly the
numbers of 2- and 3-faces containing w, are given by

w(c)l 2331
WA xAD = 2.2 =12 (3.46)
IW(C)l 2331
W) = 2731 = (347)

4. General structure of the Voronoi and Delaunay cells

The Voronoi cell V(0) and its facets are determined by certain hyperplanes
(z|le)=3i(ala)=(z,a)=1 @.0n

and inequalities

(z18) < 3(B|8) = (=.0) <1 (4.2)

where o, 8 € Q\{0}. In particular, we note that any two distinct facets may be
distinguished by the sublattice of points of the root lattice that are orthogonal to
them.

The convey set F, = {eo Jem . fm is nart of some (n — 1)-face

Paad WALS U bk WAAAC FELT ARl kbl it S A

f=f(n~-1)of V(O) Since V{0) = WF, the boundary of V(0) is the union of
the translates of F,, by W, But F is supported by the hyperplane H, of (2.27) and
now, using W, we see that the entire boundary of V(0) is contained in the union of

hyperplanes
{zeV|(z,a) =1}

where & runs through W§, = A_ = set of short roots of A.

This shows that in (4.1) and (4.2) we may restrict ourselves to taking o, 3 € A,

Thus each (n — 1)-face of V(0) orthogonally bisects some line segment {0, ]
where o € A,. This sets up a 1-1 correspondence between (n — 1)-faces and the set
of short roots.

Since for i =1,2,...,n,

(Z1e) /@l = 52 1L = 1= Gal8)/ @ 16) 4
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we see that f(n — 1) is the (n - 1)-face corresponding to §,, orthogonal to [0, £,]
passing through £,/2. The remaining (n — 1)-faces of V(0) are the W -translates of
f(n —1) and are in 1-1 correspondence with the elements of W/Stab (f). But
the stabilizer Stab,, (f) = Stab_ (}¢,).

Since £, is the highest short root, £, is dominant and hence lies in the cone of
(2.29). As we have scen C' is the fundamental region of W and by using (2.20),
(iii), we know that Stab  (&,/2) is generated by the reflections r; such that the wall
defining it passes through (&,/2):

Stab ()= (r; i=1,2,...,n; (a; &) =0). 44)

The vertices of V(0) are the W-translates of the vertices of f. The vertices of f are
translates by Stab,, (f) of some of the vertices w;/m; of F. Exactly which ones is
part of the problem of describing V' (0).

We now explain how we use the ‘decorated’ Coxeter-Dynkin diagrams to describe
the (n — 1)-faces and all the lower dimensjonal facets of V(0). We illustrate this as
we go along by the example of V(0) of the root lattice of C,. In this example we
thus determine the content of table 2.

Consider the Coxeter-Dynkin diagram of C,:

R 4.5)

4.1. Determination of the short roots and the marks

Dualize the diagram (4.5) and make the usual affine extension of it. The result is the
affine diagram Bﬂl).

o—g—om - 40

1 2 2 2
The extension node is shown as (). The marks written on the Bgl) diagram (4.6)
are the coefficients of the highest root of B, (ie. £, of C,) and are determined by
2-balancing of the graph [13] (see also exaraple G, of section 3).
Redualizing the diagram {4.6) while retaining the marks at the nodes gives us

o—%—@@ “7

i 2 2 2
and the fundamental region

= (o ¥ Y2 @3 ¥
F(C“)‘<°’ 1727272 >cw
of C, which lies inside the cone (2.29).

The extension node plays a different role from the others and so is designated ().
This becomes clear when we discuss the dual cells. The usual conventions of angles
and lengths conveyed by the extended Coxeter-Dynkin diagram are applicable here
both to the affine simplex F in which each node corresponds to one reflecting wall
of F ({ corresponding to H,) and to the simple roots «;,...,c, and the lowest
short root —§_.
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4.2. Determination of the {n — 1)-faces of V(0)

Replace each node O (which represents a simple root) by O which in the jth position
of the diagram represents w; /m;. Thus from (4.7) we get

0B

This diagram stands for the (n — 1)-face f(n — 1) determined by

(4.8)

{wi/my,. . w,/m, )

As we saw, the face f is stabilized by the group generated by the reflections r; for
which («;|€,) = 0. This information is read directly off the diagram where it is
indicated by marking the appropriate boxes:

[ HXRAX] (4.9)

Note that the cross refers to the refiection »; while O refers to w;/m;. The number
of 3-faces in this example is thus given by the ratio (3.43) of the Weyl group orders.

i STTTON

Obviously the symmetry group G™~! of f in W is Stab (f): in this case
G™l~ W(A)) x W(B,). (4.10)

We observe that it may happen, as it does here, that only one box, say the ith,
is unmarked. In this case the reflections r; in the n — 1 marked boxes reflect £, in
n — 1 independent directions in V, namely those determined by the corresponding
simple roots «;, while holding w;/m; fixed. Thus the point w;/m; is an inferior
point of the face f (in fact its centre). In particular, w; /m; cannot then be a vertex
of V{0).

4.3. The k-facets of V{(0)
We may now assume that n > 1. A k-face f(k) of dimension & of V(0} is
determined by a set of equalities and inequalitics of the form (4.1) and (4.2), where

o,8 € A,. Using W we can assume that f(k) N Fj supports f(k). Then we may
even assume that o, 3 € A7}, For

a:=ZC,-% &=y d;a el

0<¢ <1 0<d; <m; Yoe=1 (4.11)
we have
U 4.12
(@.0) =3 (412)
Therefore
d.
(r,8)=1 Z&—'- = (4.13})
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which, together with 3" ¢, = 1, gives
{z, &) =1<=><2i,d> =1 whenever ¢; > 0
i
and hence f(k)N F i

(& %eg
\me m;

(Recall that the facets are closed.) This proves the following lemma.

5109

(4.14)

_—~
L
—
in

—

Lemma 3. For any k-facet f(k) of V(0) whose intersection with F, supports it,

f(k)n F, is the convex hull of some subset

hY

’UJ" )
{H«E’"ES} Sc{1,2,...,n}.

T

Continuing with the facet f = f(k), we proceed to determine its dual f(k)*. Set

Wiy, _
fo=(Zies) = fwnF,
Then
f*=f(k) ={qeQ}fisafacet of V(q)}eon,-
Of course,
V(g) D f <= V(a) D fo.
Since the chambers making up V(0) are
{wFlweW}={wF|weW,, wl=0}
the chambers making up V{gq) are
{wF |weW,, w0) = q).
In particular, there is a w € W, such that
w(0) = ¢ wF D fy.

Then w~! f, and f, are both facets of F°. According to (2.20)
(i) w fixes f, pointwise;

(ii) w is generated by the reflections in the walls of F* which contain f,.

The walls of F containing f, are

{de'<ﬁii,aj>=o, ieS} Hg i={zeV|(z,{,)=1}

(see (2.17)). Thus w lies in the subgroup

W = l'r', ™. I ':I‘d Q\.
a5 VUt IS S

Conversely, elements of W, ¢ clearly pointwise fix f;, and hence f. Thus

fCVig)esqe W, s(0).

(4.16)

,-\
>
R
3

N

(4.18)

Lemma 4. The facet f(k)* dual to f(k) is the convex hull of W, 5(0), where S is

given by lemma 3 and W, ¢ by (4.17).
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Lemma 4 describes f(k)*, in terms of the Wythoff construction [5, 10]. See
section 4.7 for more details. We are going to see (see the remark later) that

S':={&}u{a; 15 ¢ S) (4.19)

is connected (i.c. the subdiagram of the Coxeter-Dynkin diagram corresponding to
this set is connected.
Assuming this, we can determine the stabilizer of f(k) in W:

W/ :=Stab,, (f(k)).
Each facet f(k)} has a centroid (centre of mass) that is in the relative interior of

f(k).
Let c be the centroid of the facet f(k). Then for w € W,

w € W &= we =c. ( 4.20)
But
fRy=J wh
wGW,f

and it follows from (4.20) that ¢ € fy C F. Thus using (2.21)

W/ = (r; | i =0,1,...,n;c lies in the reflecting hyperplane of r;). 4.21)

a

Furthermore,

w € WS < w stabilizes f(k)*
= w stabilizes the real linear span
(Wa,S(O))m = (Wa,S(és))E = Zmdg + m‘és =:L (422)
i¢s

by the assumption. Thus w € W/ implies that w stabilizes L. Now W/ is generated
by the reflections r; of (4.21) and from (4.22) we have for j = 1,2,...,n,

3

rjEWg=>rJ-L=L

(4.23)
= a;€lora; LL J
Thus
Wi = WlxWw? (4.24)
where
W} = (rg,r; | &; € L) (4.23)

W?:= (ry oy L L) (4.26)



Voronoi and Delaunay cells of root lattices sl

and furthermore

WHi=wnw!=w!xw? (4.27)
where

Whi=(r; | &; € L}.
Suppose that cardS > 1(i.e. k> 1). Then

(Z]Rdj ”Ri) NI ={&; | j ¢ S} (4.28)
igs
So we have the neater prescription
W, = (rg,7i | i ¢ 5) (4.29)
=(rif(eile)=0=(a;1£),5¢5) (4.30)
={r; |1 ¢ S)}. (4.31)

If cardS = 1 then S = {p}, f(1) = {w,/m,} and Wi = (rg,r; | i # p) =
Wl x W2 when W} and W? are given again by (4.29) and (4.30). Thus

Lemma 5. Let f be a k-facet supported by its intersection f, := f N F, with i
given by (4.16). Then

Stab,, (f) = W, x W?

Stab, (f) = W' x W2

where W1 ‘I/V2 W1 are
of fin W is W,

o
Fothd

4.4. Determination of the (n — 2)-faces of V(0)

Consider now the determination of the (n — 2)-facets of V{0). Designate such a
facet by f(n — 2) and assume that f(n —2) N F, suppors f(n —2). By lemma 3,

fn—)nFy={ .. 2o Yo (432)
ml mp mﬂ conv

indicating that the vertex w, /m, of F; is omitted. Note that then f(n - 2)N Iy C
H, nH,
P

However, if box p is marked with a cross, then r, stabilizes f = f(n—1) and
so H, n H, passes through the interior of f(n -1 ( gure 2). I othcr words,
H, ﬁH cannot support an (n — 2)-facet of f(n—1) and so w_/m  is not suitable

for removal
Conversely, since H, N H, does support a facet of Fy, the only reason that it

can fail to support a facet f(n —2) is if it passes through the interior of f(n —1).

That — 1) containe noninte on hath sides of H Rut we have the oennml
Fuir-i lll\aalla J \u, 1} conains PG Uil DUl cies }.. AFuL TTw A Tw LW mudvidl
fact that if = € F then

werji=1,...,n; i # j) = {wz,&;) > 0. (4.33)

It follows that r; is involved in ‘filling out’ f(n — 1), ie. r; stabilizes f(n —1) and
box j is marked with a cross. Thus we have the following lemma.
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e T

[

Figure 2. The plane H,; passing through the interior of a facet.

Lemma 6. {wy/my,...,&,/m,,...,w,/m,) supports an (n — 2)-face iff box p is
unmarked.

In our C, example, we have only onc possibility:
()

corresponding to
Y1 s Y
< l ’ 2 ’ 2 >conv ’ (434)

Continuing from lemma 6, since the rest of this (n — 2)-facet lies in f(n — 1),
we must determine the subgroup G of Stab  (f) that stabilizes f(n —2). Using
§=1{1,...,n}\{p} and lemma 5,

Stab, (f(n -2)) = W x W?
so that

G = (r

1

li=1,...,n, (e | £) = (a; | &,) =0). (4.35)

In our example we have the 2-facet given by the diagram (3.34) and again in tablc 2.
Again the information on the stabilizer of the facet has been read directly from the
diagram.

4.5. Determination of the (n — k)-faces of V(0)

We determine {(n — k)-faces inductively from the (n — k + 1)- faces. The procedure
is precisely the one used earlier to determine the (n — 2)-faces.

Each (n— k4 1)-face, call it f(n — k+ 1), of which there may be more than one
is then represented by a decorated Coxeter-Dynkin diagram in which one indicates:

e which w,/m,; are used;

o which Weyl subgroup stabilizes it.

The explicit procedure consists of the following:
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(i) A subfacet f(n—k)of f(n-k+1) is determined by removal of an w; /m,,
the only condition being that this is unmarked by cross.

(ii) The new marking is determined from the old marking by removing the marks
from boxes which have edges joining the newly deleted node.

The arguments are trivial modifications of those already used for the (n — 2)-
facets,

In our C,; example, we thus find the two Weyl group orbits of 1-faces (edges) of
V'(0) listed in table 2.

Remark. Since the only boxes that may be deleted are those which are not marked
and since these are precisely the boxes which are connected to the subdiagram of
‘deleted’ nodes (i.e. those shown as (O in the diagram), we see inductively that the
subdiagram of deleted nodes is connected. This justifies (4.19). The rule for deleting
nodes is precisely equivaient to:

A box may be deleted if and only if it is connected to the subdiagram of previously
deleted nodes.

To continue our example, we get the 0-faces of V' (0) shown in table 2.

4.6. Inciusions of facets

Let f be a k-face. Let n > m > k. We wish to understand the collection of m-faces
f such that f > f. For this purpose we may assume that f, := f N Fy supports f.

Suppose that f > f. Then f is some union of W, -translates of some m-face g
of I (actually of Fj) and so there is a w € W such that f 2D wg D fp- Thus some
subfacet f; of g satisﬁes wfy = fo and since f] and f, both lic in F, f§ = f, and
w pointwise fixes f;. Thus w € Stab, (f)) = Stab‘:v(f), Fi=w'f>g and
F'1V F, supports f’. Thus we have the following lemma.

Lemma 7. If f is an m-face containing a k-face f where f N F, supports f, then
f is a translate by an element of Sta.bo (f) of an m-face f' where f'N F}, supports

f'. The set of m-faces containing f is

Stab, (f)(f). (4.36)

Suppose that
" fwi o\ v e
fn \E—-zeo/ cardS = k+ 1. 4.37)

Then by lemma 3,
Stab’ (f) = W! = (r |k ¢ S). (4.38)

Let f be an m-face containing f which, according to lemma 7, we can suppose
to satisfy

fnF = <%|i € S’> (4.39)
conv
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where S’ O S, cardS’ = m + 1. Then the set of all m-faces containing f in the
W-orbit of m-faces generated by f is

Fj =W (4.40)
We have

Stab_(f) = W' x W2

W= (ry | k¢ S)

W2i=(r; | (e | a;) =0=(§, | a;),i ¢ ).

From {4.40)

cardFy o = [W!: W' n(W'x W?)]. (441
Since for any two subsets K, L C {1,...,r}

(rilieKYyo{r;{jeL)y=(r;|j€ KNL} (4.42)

it is trivial to compute (4.41). Some examples in the case of C, are given at the end
of section 3.

4.7. Dual cells
According to lemma 4, if a facet f(k) of V'(0) is supported by the set

{:: |ie s} (4.43)

then f*(k) is the convex hull of
W, s(0) = (g, 7y | i € S)0). (4.44)

This type of prescription for construction of a polytope is called by Coxeter the
Wythoff construction,

The construction is symbolically presented by the Coxeter-Dynkin diagram of
the reflection group W, o with the node for the reflection r, specially marked (we
use a centre dot (). This marking indicates that the vertices of f*(k) all lic on
one W-orbit and that the generating point lics on all the reflecting mirrors of the
fundamental region except the zeroth, i.c. in this case the point () is the origin 0.

Suppose we have given a connected decorated diagram N of (1.1), describing a
d-face f(d) by N¢,. and its (n — d)-dimensional dual f*(d) by N23°.

For example in (3.28) we have N}, for ecither of the two Delaunay cells of the
vertices w;, and 1w, of V(0) of the C, root lattice, the full diagrams are in (3.25).

We wish to describe the facet structure of the dual f*(d) of f(d). For this
purpose we consider the subgraph NJ-“‘d of N5, d,

NP 0<j<n—d (4.45)
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where N7~¢ is connected, contains (2, and a total j nodes. It represents a W-orbit
of j-dimensional subfaces of f*(d).

In our example the dual cell to the vertex fw, is given by lemma 4 as the
second diagram of (3.28). In table 2 we supply the identification of these polytopes
as provided in [10, section 11.7] and [5, ch 21]. In this example let us describe the
facets of the half-hypercube of each type. The admissible subgraphs of the diagram,
indicated by open boxes, arc the following

eSe e3s 08e o30 080

In the present case we are considering the convex hull of the origin 0 by the group
Wy = (rg,my,mg, 1a) 2 W(Dy).

The stabilizer of 0 is generated by the reflections of W, whose hyperplanes pass
through 0:

{ri, o) = W(Ag). (4.47)
The number of vertices of the half-hypercube is

| W(D,) |

4l g 4.48

[W(A;) | (49

The edges are the W (D,)-orbit of the representative edge [0, r,0] = [0,£]. Its
stabilizer is generated by r, and those reflections +; of W, whose hyperplane passes
through the edge; i.e. precisely those which are orthogonal to the hyperplane for »;:

(ro. T3y = W(A; x A x Ap).
The number of edges of the half-hypercube is

| W(D,) -
WA XA x AT} = 2% (4.49)

Similarly the 2-faces are W({D,)-orbits of [0,7,0,r,r,0} and whose stabilizer is
generated by (r,,m;) =~ W(A,) and those reflections r; of W{.D,) (in this case
none) whose hyperplanes contain the face.

The number of 2-faces is

A LIV RREALILALE wra LTilawny

WD) _
m = 32. {4.50)

The 3-faces are of two kinds (refative 1o W,):

® O
ob ™ b0

These are 3-simplexes and give rise to

| W(D) | _

WAy |~ (430



5116 R V Moody and J Patera

3-faces of each type. Similarly for the other set of holes

% (4.52)

we have the four-dimensional cross-polytape (3,) with the following numbers of

Wit

[ \

. [RASNCZY I
Vertices: W(Cy)| =8 (4.53)

[W({C)I

Edges: 4 = .

ges IW(A,) x W(C,)| 24 (434)
2-faces: IW(C)| =32 {4.55)
IW(A) x W(A)] =)

. (W(C,)| _
3-faces: WAl =~ 16. (4.56)

In this example it happens that 4, and h-, are the same, although we note that
the group of symmetries in the second case is twice as large and is able to fuse
the two orbits of 3-faces. For C_,n > 5, the duals of the two types of holes are
genuinely different. For an alternative proof of the results of section 4 see [12].

£. Classification of Voronoi and Delaunay domains

In this section we present the results of an application of our method described
in section 4 to the root lattices of types A, (n 2 1), B, (n 2 2), C, (n 2 3),
D, (n2z4), E, E;, E;, F,,and G,.

J.1. The root lattice A,

An application of the method described in section 4 to the d-faces of V(0} of the
root lattice A, ,n > 1, yields the results summarized in table 4.
In this case

f=f=aytat - to, =w +uw,

and consequently all the marks m; are the same, m; =1 for 1 < 7 { n. The boxes
of a decorated Coxeter—Dynkin diagram stand for the corresponding fundamentl
weights.

In general, there are n — d different types of d-faces of V'(0), each type is
represented by one decoration shown in table 4.

The n different types of 0-faces (vertices) are represented by the fundamental
weights w;, j = 1,2,...,n. The number of vertices of type w; is equal to the size
of W -orbit containing w;, namely

W(ADI  _ _(nt1) (H-l).

WA, WA ) (n—d+ 1)1\ 3 (>-1)
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Table 4. The representative faces of V(0) of the root latlice A,, n 2 2, and their
duals.

Face
dimension

n-1 f:-? {(vt+1)n
n-2 SR - =01 (o+1) (3)
-2 :-' (m+1) ()

Diagram Number of faces

d go— [

a & OB 0

d & o —mOo— (alth) (2

: 0<d<n-1, O<k<n-d-1

d —o%
r Tooooned
. Smhe oo
L Troooood
B

A GO

a goo—-o—o—o—o:&\

Consequently, the total number N, of 0-faces of V(0) of A, is given by

n n+1
N,,=Z(“j.'l)=Z(";’.’1)—2=2“+1—2. (5.2)
i=1

j=0
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A generic d-face is given by the diagram

b @O - O 6

where 0 kgn—-d-land 0 gdgn-1,n21. The number of faces of this

tyne e oivan hy
ype 18 gwven by

|W{A ) _ (n+1)! ' -
IW(AIW(AL)DNW(A, o)l (k+1)ldH(n—k—d)!
The total number N, of d-faces of all types is thus
n—d-1 (n+ 1)! _fn+1 a1d
:L:g (k+1)!d!(n—k—d)!"‘( d )(2 - 2). (5.5)

Finally let us verify the validity of the Euler formula (2.33) for A, . Substituting (5.5)
for N, in (2.33), we have the identity

1= (=1)" = Z(_l)d ('nji-l) (2n+1—d_2). (5.6)
d=0

The properties of Delaunay domains of A, and their faces are similarly read
from the table 4. For every vertex w, of V{0) we have its dual D(w; ) of dimension
n. The subdiagram of circle nodes of the diagram of «w,; has the structure

i —O——O—O— - =00 5.7
k-1 k-2 1 0 e n-l k+2 ki

fhera we are chowing the nnmhprlnn nf the nndpe\ The Lth node the hox urhu“h

\llv SR L IIIE RELY ARNALNLIU W R A S LR BT 5

was deleted. The symmetty proup m W, of D(wk) is W(A,) gcnerated by the
refiections indicated by the nodes of (5. 7) The number of vertices of D{w,) is the
size of the W( A, )-orbit of the node ()

IW(A,)| N G5 2 L (n+1)_ 5.8)
IW(A_DW(A, ) k(n—k+ 1) k

According to section 4.7. the edges of D(w,) are W(A_) conjugates of the one
containing (*), namely [0,r,0]. Its stabilizer is W(A,_, x A} x A,_;_,). Hence
D{w;), k = 2, has the following number of edges:

= -(r i' k)2’ 59)

(k—

Even for D(w,) we find that (5.9) with k = 1 gives the correct number of edges,
namely (*¥1).
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Table 5. The representative faces of V{0) of the root lattice By, n > 2, and their

duals,

Face .

dimension Diagram Number of faces
n-1 n
n-2 2n(n-1)
d RO——O{-F— ~FxE 244 (1)
2 OO 22(3)
! @O-O— -~ 2"y
0 00— - —O—0-Ond] 9"

5.2, The root lattice B,

The method of section 4, applied to the B, ,n > 3, case gives the diagrams summa-
rized in table 5.
The highest short root of B, is

L=yt ayt o, =w,. (5.10)

The matks m, are found from the dual Coxeter-Dynkin diagram to B,, which is the
C, diagram, &, being its long simple root. The highest long root of C,, is

n
F _\ .. = _a=x \ | nox VX FE 11N
gs—Lniu]—-.aul-r----raun_l-f-un. \J.ll}
i=1
Hence the boxes of the decorated diagram stand for
Wy Wy Wpop W
?1, DR "2 ,T“. (5.12)

| | |
f The Voronoi cell V'(Q) is a hypercube. All d-faces are of one type. Their number
Ny is given by

= W(B,)I R e £ |
Na= IW(A,_s-)IIW(Bg)| — (n—d)t2dd! — 2 (d) - (5.13)

The Euler formula (2.33) in this case is easily verified using (5.13):

-1 n—-1
Yo (-1)N, = > (—1yderd (3) =1-(=1)". (5.14)
d=1 d=0
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Table 6. The representative faces of V(0) of the root lattice Cu, n 2 3, and their

duals.
df;;ceension Diagram Number of faces
n-1 : R 22(11?‘2)
n-2 2 (0-2) (a)
n-3 - ~FRE 2* (0-3) (n'3)
n-3 R 2% (n-3)
d OO - OB 81 2l (4)
d OO - T - ()
\ 000 - OO 2 (3
2 oS0 - 2" (5)
1 0-0-0- - —0-0-CHO 2
1 oS0 - 0-o-CHm 2"
0 D@,& OO 2n
0 o N 2

The Delaunay domain D(w, )} of the B, root lattice is also a hypercube. lts
symmetry group in W, is W(B, ) generated by r,,0 < p < n — 1. It has

W (B,)| n
. L Sk EE 5.15
WAl o 1)
vertices represented by 0,

IW(Bn)I =2n—1n (516)

[W(An_2) - |W(4,)|
edges represented by [0, 7,0],

W(B,) 27l
IW(A,_)| - |W(B,)| ~ (n-2)23

2-faces represented by the triangle [0, r,0, v, r,0], etc.

(5.17)

5.3. The root lattice C,,

The application of our method to C,, n 3> 2, gives the results summarized in table 6.
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The highest short root £, is
L=ayt+ 20+ 2054+ 20, +a, =w, (5.18)

and

€= Gy + 28, + 2654 - + 24, (5.19)

Therefore the boxes of the decorated Coxeter-Dynkin diagram denote the points

W, Wy Wy w

-1 n
1123 2"-'y2' (520)
The fundamental region F' given by its vertices is thus
! . 5 W
F= 13 X3 Eny .
(0,1,2,2, ) (5.21)

Among those only w, and w_/2 are the vertices of V(0).

The Voronoi domains of ¢, have one type of face of dimensions d = n —1 and
n—2,and two types of face for6 < d < n - 3.

In order to determine N, for 0 € d £ n — 3, we have to add up contributions
from the two types of face, treating the case d = 0 separately:

W(COI , [W(C)l _2"n! _ 2%n!

M= W T wie, ) = w T rmo o2t (>-22)
N, = IW(C)I + [W(C,)l
T WAL DIIWI(C) T [W( A, g ) IW(Cyy)
= 2n-d (3)+2"-‘*+1d(3’) 1<d< n-3. (5.23)
The numbers N, _, and N, _, are found as follows:
_ [W(C,) _ 2"n! 3. n
Moos = A = Tt i = D (o Dy) 629
_ [W(CuI _o2f T
Mot = AW (C, 1~ (n—z)' -25)

Finally let us verify the validity of the Euler formula in the present case. For that
we substitute (5.22)-(5.25) into (2.33). We have

n~—1

d(-1)¢N,

d=0
n=-3 n—3
n n—d [ T -d n
=2"+2n+ » (-1)%2 (d) +d§_l(—1)d2“ ‘“d(d)

d=1
+ (~1)""223(n — 2) (n f 2) + (-1)n~122 (niQ)
1o (5.26)
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There are two types of Delaunay domains of V'(0) of C, root lattice: D(w, /2)
and D(w,). These are the half-cube k-, and the cross polytope G, respectively (see
table 3). Their symmetry groups in W, are respectively

W(D,)={rg,ms7g sy}

W(C,) = (rg,Tys gy vy Tp)- (5.27)
They have
[W(Dn)l n—1 IW(C )I
— ) =9 d —_—nr | = 5.
WA, )] w - wie, T ©28)

vertices (cf (3.30) and (3.29)),

WD onafn W)l afn
WA, x A, x A, )]~ - (2) ™ e IWA ()
(5.29)

edges, etc.

5.4. The root lattice D,

The results of our computation of faces of V' (0) for D,,, n 2 4, are shown in table 7.
In the present case we have

E=¢ =, mwy =0, +20,+ 203+ + 20, s+ a,_; +a,. (5.30)

Hence the boxes of the decorated diagram denote the points

[ 73 ! o _ W _ W
_2_2$ ?3"”,11._2 2= .1_11. (5‘31)

Ts 2 1 °
and the fundamental region F is given by its vertices as

Wowy Wy Wnop Wnoi Wy

, , . 5.32
1' 2’2’ 2 1 1> (5-32)

F= <0,
Among these only w,, w, _, and w, are also vertices of V(0), representing the three
Weyl group orbits of vertices of V'(0).

The Voronoi domains of the D, root lattice have one type of face for dimensions
n—1 and n — 2, two types of face for dimensions 2 € d € n — 3, and three types of
face of dimensions d = 1 and 0.

The total number of vertices of V(0) is given by

|W(D,)] (w(D,)| gn-1lp! 9n=1p
N, = Z, + 2 2 = +2
T W(D, )| T TIW(AZ) T 2R (n 1) n! (533)
=2n 4 2",

The 1-faces of V/(0), given by their vertices, are the following three

[wys waoi] [ww“’n] [wpoyswy ] (5.34)
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Table 7. The represcatative faces of 1(0) of the rool lallice Dy, n 2 4, and their

duals.

Face
dimension

Diagram

Number of faces

u-1

n-3

n-3

O-®
[]

Q
(]

[x]
£

[<XHX]

<
X

[<H]

£
[X]

(<HX]
(X

[<HX)

Ed
X

'
8o z
O o

FRRFRRRFE
SERRRRRRTY

2 (11132)
28 (n-2} (nt-l2)
2* 0-3) (ne3)

2 (nlf3)

e ()

()

22 (%)
2%3(5)
22 (3)

2(3)

Their numbers in V(0) are equal because their stabilizers are isomorphic to

W(A,_,). One has

N =3

(W(D.)| _

3

2n—l

3

PTTIW(A, ) T T (n- 1)

L =3.2" 1y,

(5.35)
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For 2 < d € n — 3 the number of d-faces IV, is a sum of two terms

N, = IW(D,)I| + (W(D, )|
FTAW( A WD) 7 W (Ao DIIW(D,)]
2n-1p) 2" 1n!
= 5.
= d-D)l T (n- D d (5:36)
— pn—d+1 n n—-d [ T
= gn-dtly ( d) +2 ( d) .
Finally for N, _, and N, _, we have
N IW(D, ) 2r~1p! 23( 2) £ n N\
= n—
= WA IW(Da o)l ~ Z2°-3(n—3)! \n-2)
IW(D,)I| 2"~ In! af n
N, = = =2 5.37
1 = WANIW(D, )] ~ 2 27 %(n-2)1  ~ \n-2 -3
Cinro tha chnart rante nf fnrm 100t system nf tuna N tho rnnt latticae nf tynee
wZALIVAY  LLNN DIIUII. L 1 9 U jivi iy 1UUIL ﬂJﬂl‘-’lll v tJ P\i Uﬂ’ LAV A UUL I LIV WL I.}' H\;D

C, and D, are equal. Iti 1s the f ore no surprise that the numbers N, coincide,

There are three orbits of Delaunay domains in V(0) of D (n 2 4) : D(w,),
D(w,_;), D(w,). Two are half-cubes h+, and one is the cross polytope 3,,. Viewed
in € the two orbits of half-cubes are fused into one orbit, as we have seen.

3.5. The rooi iaifice Eg

Our results concerning the faces of V(0) of E; are found in table 8,
In this case

E=¢ =€ =0;+2a,+ 303+ 204 + a5 + 205 = ws. (5.38)

The boxes of the Coxeter-Dynkin diagram decaration therefore stand for the points

T e 63
The vertices of the fundamental region are
W «w 73
Pe(0 ) o
Among them w, and w; are also vertices of V(0).
The Euler formula is readily verified. Indeed, one has from table 8
Noy+ Ny+ N, = N, + N3+ Ny = 2934, (5.41)

The Delaunay domains D(w,) and D(wjy) of V{0) differ by the automorphism
of the diagram. They are copies of Gosset's polytope 2,,. We consider only one of
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Table 8. The representative faces of V(0) of the root lattice Eg and their duals.

Face

! . Diagram Number of faces
dimension

.
B & [
] <] (<]
O O XKD

K& X
& (< [

X}

-y

2

[

@

® O®
(3=
-
“%
2,1

E
C
C
(
L

3]
] 0
O
O
[]
<]
]
w
b:'h!
W

-
O
@

OO0

- [1®
B
[X]
w
1)
oW

—
Bx]
[]
O
O
O
[
[2-]
2]
2]

33

them. The symmetry group in W, is W(D(w,)) = W(Ey), and

M= T a, A =2

Mo A A A =S 52
Ny = g =28 |
ye < WE WD _ o

PTIW(D) T W(4,)
verifying (2.33): Ny + N, + Ny= N, + Ny + N,

3.6. The root lattice F,

Table 9 contains the representative faces and the number of times they occur.
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For E, we have
E=§( =6, =20, +3a,+ 4oz + 3a, + 205 + o + 20, = w,. (5.43)
Thus the boxes of the diagram indicate the points

L3 s e (5.44)

and
= W Wy Wy Wy W W Yy
F—<0’2’3’4’3’2’1’2> (5.43)
The V(0) vertices split into two W -orbits represented by w, and w,/2.
The Euler formula is verified directly using N, of table 9:
No+ Ny+ N+ Ny = Ny + N3+ Ny + 2 = 26966. (5.46)

The two Delaunay cells of V(0), D(wg) and D{w;/2) are very different. D(wyg)
is Gosset’s polytope 3,; and D{w. f2) is an 8-simplex. Their symmetry groups are
W E.\ and DV( A ) resnectively, {"nnepmmprlu we find

oy Lig ) QUG FY | Mg TOPVMWLITWAY s SISV R

IW(ED| _

No(Dl(ws)) = ety = 2° 7

KDL ) = 7T =7 son
Ny(D(we)) = W—l(‘%{% =22.3%.7
Ny(D(w:/2)) = W% — 9?7

atc,

3.7. The root lattice Eg

;R.lble 10 contains our description of V'(0) faces of all dimensions and their multiplic-
ltlﬁs1.=01' E; we have

£=6 =6,=20, 430, +4a3+ 5a, + 6oy + 4o +2a; + 3ag = w,.  (5.48)
Therefore the boxes of the diagram stand for the points

________ (5.49)

and they together with the origin are the vertices of F.,
Checking Euler’s formula by the entries N, of table 10 gives the following

No+ Ny+ N+ Ny= N, + N;+ Ny + N, = 751920. (5.50)
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Teble 9. The representative faces of V{0) of the root lattice Ey and their duals.

Face

! . Diagram Number of faces
dimension
2
[} O S N o 1 S 1 g 3. b My 23°7
P
5 OO+ 2° 37
4 GO~ HRA-— 2357
- B o2
3 oooo. 2°3° 57
~ _,_._.‘.9.—-..—.#. b 2 o
- O-O0-O-C10-0 3T
] 6 o2
2 O—-CO-O0—-0O-010-X 237
@ 2 a3
1 OO0~ 2237

L an W e WAV A v v

The Delaunay domains D(w,/2) and D(wg,/3) of V(0) of E, are the 8-
cross polytope and the 9-simplex respectively with the symmetry groups W(D,)
and W(A4,). Consequently, we find the following numbers of d-faces of D(w,/2).

NU:L“i@s_)l=16 le_l_‘i"_&&sll._;ng
|W(D,) [W(A; x Dg)|
[W(Dg)| |W(Dy)|
N,= ———— 28 =448 Ni= ———2.. . =1120
2 IW(A?, x Dg)| 8 IW(A:; x Dyl
|W(Ds)| |W(Dg)|
N, = ————"8_ =896 N, = — - — = 896
TOIW(A x Ayl T IWH{Ag x Ay x A
|W (D)t W (D)l
N, = -—=b2 = 1024 N, = 27— =256 5.51
¢ WA, "= WA, 1)
verifying (2.33). Similarly for D(w,/3) we have
|W(Ag)
N,= —» 87 . for0<dgT, 5.52
4T WA, x A,_y)l (52)

Because N, = N._,, (2.33) holds.
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Table 10. The representative faces of V' (0) of the root lattice Ey and their duals,

Face Diagram Number of faces
dimension

7 O 4 4 b 4 235

6 OO -F-5a—pd—5- 357
5 OO FE-H B35y
4 OO0 2357
3 @O0 35 2357

]
2 G- O-O—O0—O—11HR 2 3ts7

C
1 2?3y

ot
E’
2,
=3
e
=]

5.8. The root lattice F,

Table 11 contains cur results concerning the faces of V(0) of the root lattice of F,.

In the case of F, we have the highest long, and the highest short roots respectively
given by

{=20, 430+ 43+ 20, = w,
=20+ 40y + 3o+ 20 = wy,

~—~
A
LN
1]
o

Dualization of the diagram produces the dual F, with long simple roots &, and d,
and short simple roots ¢, and &,. The highest long root of F, is

£, = 26, + 3, + 46, + 24,. (5.54)

Therefore the boxes of the decorated diagram denote the points

W Wy W3 YWy
2' 43 2
and
— W Kh Wy Wy
F=(0,5 0 5 3 (5:55)

The vertices of V/(0) all belong to the single W-orbit represented by the point w, /2.
Validity of Euler’s formula is evident from the last column of table 11:

In this case we have D(w,/2) which is the 4-cross polytope with the symmetry
group W(C,).
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Table 11. The representative faces of V' {0) of the root lattice Fy and their duals.

dl?,?-f;ensiou Diagram Number of faces
3 2*35
2 B -0~ 2357
1 %387
0 0-C30-0-0 P57

50 he ront
el 1

LFEU § L

The pertinent results in this case have already been presented as part of an example
in section 3 (cf figure 1). We add the same information here in the form of table {2
for completeness and uniformity of the presentation of our results.

For G, we have

5 85
-l

£ =2 36)

4L A £ =
OO o

= L D
2 by T T &

{
1 1 bt S

The G, diagram is self-dual, i.e. a dualization produces G,. Its long simple root
is &, and the short simple one is &,. The highest long root is now

£ =28, + 34,. (5.57)

Consequently the boxes of the Coxeter-Dynkin diagram are the points w,/2, w, /3,
and F = (0, w,/2, w,/3).

Table 12. The representative faces of V(0) of the root lattice G and their duals.

Face Diagram Number of faces
dimension

1 EA==M g O 6

¢ =C0—® 6

The Delaunay cell D(w,/2) has the symmetry of W(A,) and

WAy
No=MN=wpea,y =°

(cf figure 1 and (3.24)).

6. Generalized kaleidoscope

The solution to determining the Voronoi cells of a root lattice consists of describing
the fundamental chamber of the affine Weyl group W, = W x Q by its Coxeter-
Dynkin diagram and determining the rules by which the diagram is decorated into
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two subdiagrams representing respectively a k-face of the Voronoi cell and its dual
(n — k)-face. The dual faces are described using the Wythoff construction on the
corresponding subdiagram. The root lattice @ itself can be viewed as an extreme case
of the Wythoff construction when the entire Coxeter-Dynkin diagram is used for this
purpose.

We can interpret the Coxeter-Dynkin diagram and the fundamental chamber as
simply giving the reflecting hyperplanes for the generating reflections of W, together
with the angles between them. In general, a collection of reflecting hyperplanes which
are situated so as to have all their mutual angles of intersection as submultiples of =,
say m/m;;, m;; €L, 1,5 € {1,2,...,n},t # j, is called a generalized kaleidoscope.
It can be represented by a Coxeter diagram, very much as before [C]. We introduce
one node for each mirror and join nodes ¢ and j by an edge overmarked with the
number m;;(= m;). If m;; = 2 we discard the edge, and in the case m;; = 3 we
usually omit the marking. This leads us to generaiize the situation at hand in two
ways simultaneously:

(i) We may replace the Euclidean (or affine) kaleidoscope by any other, providing
that it is a bounded simplex F of spherical, Euclidean, or hyperbolic geometry.

(ii) We may choose the special node of the corresponding Coxeter-Dynkin at will.

Denoting by W the group generated by the reflections in the walls of £ and the
vertex of F' corresponding to the special node by v,, we define the discrete set of
points

Q= Wy,

Then Q plays a role analogous to the root lattice @@ and we may consider its Voronoi
regions (clearly all W-translates of each other), the facets of the Voronoi region,
and the corresponding Delaunay cells and their facets. Remarkably the method we
have described above works without any change in this new situation, except that the
vertices of I can no longer be given using a system of marks {m,}.

Here we confine ourselves to a few examples that illustrate some of the possibili-
ties. By redefining the Voronoi cells in a way avoiding the metric, we can develop a
theory that applies to any generalized kaleidescope and to any W-orbit of the Tits
conc X. It is then possible to classify the facet structure of the Voronoi cells and
their duals by a scheme of decorations of the Coxeter diagram that is a simple and
natural generalization of the scheme developed here. The more general setting leads
to an entirely different exposition of the classification. Details appear in [12].

6.1. A hyperbolic kaleidescope

Suppose we have given the diagram

4 .6

O-0-0

This represents the kaleidoscope generated by reflections in a triangle whose interior
angles are w /4,7 /6,7 /2. Such a triangle exists only in the hyperbolic plane. The
fundamental region F and some of its reflected images are shown in figure 3. We
consider the set of points @ given by
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Figure 3. The kaleidoscope of section 6.1 is a tesselation of the hyperbolic plane by

i 3 pen w0 mld —f8 Ta ihoe saccacandadlon
reflected images of a znang}c whose anglcs 8iC Wje, Wi4, wju. 1ii 6T (CPIESCnnation

of the hyperbolic plane shown here the outer circle is the absolute circte at infinity and
the geodesics are arcs of circles orthogonal to the absolute. Only a small part of the
tesselation, which has infinitely many cells, is shown.

This means that we select the vertex v, of F corresponding to the dotted node and
apply to it the entire reflection group.
The Voronoi region is then the hexagon

on figure 4 with edges and vertices and their duals given by the diagrams
-0
as illustrated in figure 4.

6.2. A spherical kaleidescope
Consider the diagram

e-0-0"0
The full reflection group W here has order 14400 [10]. For the set Q we take
:

AN L Vo Ry PSRy pi. SO STy ppp PR P N We I

wiiich consisis of 14400/120 =120 poinis comprising the veitices of the well known
600 cell in 4-space. We view this as a tesselation of spherical 3-space. The Voronoi
region V for Q is

5
[o XXX
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Kie

Figure 4. Voronoi and Delaunay cells of the hyperbalic kaleidoscope of section 6.1. The
orbit under the reflection group of the centre point (indicated by open circles) gives rise
to the typical Voronoi region shown as the hexagon in light shading. The quadrangle
indicaled by the dark shading is a typical Delaunay cell of maximum dimension.

with facets and duals given by the diagrams

5 5
ORN OO O—O—0O2)
Using the fact that the reflections
5
generate a group of order 10, and counting the facets as before yields
120 120 120
NZ—E—]-Q Nl_ﬁ_BO NU‘—-E!——20

from which it is obvious that V is a regular dodecahedron. The dual cells are all
simplexes of various dimensions.

6.3. Two C, kalei

e B e P~

Finally let us consider two examples of type C, in which we assign the special role,
indicated by the dotted circle, to different nodes of the diagram. We take

00 e i O

The structure of the corresponding Weyl groups, given by the subdiagrams of
nodes without the dot, is W(A; x A4, x C,;) and W(A; x A,). As the diagrams of
the Voronoi domains we thus have respectively

and
o XX l—:—“ (o X
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Table 13. Representative faces of Voronoi domains V' of the two kaleidoscopes of section
6.3, their multiplicities, and dual faces (subdiagram of circles).

Face Diagram # Diagram #
v (R 1 (B 1
] (4]
3-face 8 (-exO 12

B-—E0 i

Z-face ._2“" Oy ill==Ed q
.“:_"
2-face [ O X 4

2-face C]*E)—Cﬂi:l 8

0-8 e
1-face 2 E}E—@:ﬁ@ 12
I-face O—g—OiD 4 O—g—(i):ﬂ]

Lhee Ol e 4 I .

k-facc L= 4

=

g

b
<§a
v

=S

Using the same strategy as before, we find the representatives of W -orbits of
frnane thnle wudiimblnleinn nod Aunln c;malaansin b tlhcnon abhoacee 2 2a-lla M TR Laoon
1alln, LiICL lllulLlPllLlLlCD, dllu Jduan dmuuguua 1 LHUNC SIMUWIL 1 LdUDIC £, WO [ldve
put together these results in table 13.

One may have noticed that we have, in fact, already considered kaleidoscopes
with special nodes elsewhere than on the extension node. Indeed, these were the
cases where we were interested in the structure of Delaunay domains or facets of

facets (see, for example, the diagrams in (3.28) and (5.7)).
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