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AbsIrscL The Voronoi domains, their duals (Delaunay domains) and all their faces 
of any dimension are classified and described in terms of the Weyl group action on 
a representative of each type of face. The representative of a face type is specified 

n e  "I!PS nf dnmain 
description are uniform for root lattices of simple Lie groups of all lypes. An nplicit 
description of the representatives of all faces is carried out for the domains of root 
lattices of the four classical series and for the five exceptional simple Lie groups. The 
Coxeter-Dynkin diagrams required here are the diagrams ertended by the highest shon 
mot. Each diagram is partitioned into two subdiagrams, one describing completely a 
d-lace of the Vomnoi domain, its complement completely describing the dual of the 
d-face. The applicability of our classification methcd to generalized kaleidorcopcs is 
explained. 

In memory of Hans Zassenhaus 

by a decoratinn of the mrrmp.2nrling roxc!Pr-r)vnkin dirg"~ 

1. Introduction 

The purpose of this article is to study the Voronoi domains of the root latticcs of 
the simple Lie groups of all ranks n 2 1, to classify and to describe their races oI all 
dimensions d (d-faces) for 0 < d < n, and to  give a similar description of their duals 
or Delaunay domains [l, 21. 

In physics literature, particularly when one is concerned with dimensions not 
grcarer inan mree, rnese uumains are aisu WIICU wigncr-xiu CCIIS anu nruiuutn 
zones. Other occasionally used names are proximity cells and Dirichlet domains. 

In general, for a lattice r in Fin, the Voronoi domain, or cell, of a lattice point 
a, denoted by V (  CY), is the set of all points of R" that are at least as close to a as 
to  any other point of r. 

Voronoi cells appear naturally in problems of crystallography, solid state physics, 

Voronoi cells of root lattices was awakened by the work of P Kramer er a/ [31, in 
which these cells and their duals play a crucial role. 

Information about the Voronoi cells of root lattices of dimension greater than 
three is scattered about the literature. A detailed account of the lattices A,, D,, and 
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D, is given in a series of papers [3, 41. The most detailed account of the Voronoi 
cells of root lattices appears in the excellent paper of Conway and Sloane [ 5 ,  61, 
where the direct motivation is coding theoly and sphere packing. Much information 
on four-dimensional crystallography is found in [7,8]. For an informative introduction 
to the importance of Voronoi cells in the theory of lattices see [9]. 

In this paper we start from the result of Conway and Sloane (equation (2.28)) 
in the case of Voronoi cells and from the Wythoff prescription (equation (4.44)) 
for Delaunay cells and develop a simple graph-theoretical method of simultaneously 
classifying the facet structure of both cells. The method also gives explicit information 
on the symmetries of each facet, its vertices, and other subfacets. In spirit it is similar 
to the methods of Coxeter [lo] and indeed it relies on the affine Coxeter-Dynkin 
diagrams and the remarkable properties of the affine Weyl group and its fundamental 
region. 

The classification of the faces and facets of the Voronoi and Delaunay domains is 
encoded in certain ‘decorated’ versions of these same diagrams. The facet structure of 
the Voronoi cells is described by a series of decorations of the corresponding Coxeter- 
Dynkin diagram and an algorithm for proceeding from d-facets to (d-  1)-facets. The 
dual (Delaunay) cells are described simultaneously from the same diagram although 
the interpretation of the nodes of the diagram referring to facets of the Voronoi and 
Delaunay domains is different. 

Since the root lattice of a simple Lie algebra is, in fact, generated by its short 
roots, a multi-length root system gives rise to Voronoi and Delaunay cells that also 
occur in the analysis of the root system comprised by its short roots (this is clearly 
visible in the A, and G, case in figure 1). Our method works using both the  diagrams 
of the full root system and its short root subsystem. It is interesting and revealing to 
see how the information given in each case both coincides and differs. The differences 
are due to the differences in the Weyl groups and how much of the facial symmetry 
is carried by these groups. 

Of particular interest in the classification are the vertices of the Voronoi domains, 
sometimes called the holes of the root lattice. Locally these are the points of Rn most 
distant from all the nearest lattice points. In general, a root lattice has several types 
of holes as classified up to equivalence by the affine Weyl group. More precisely, 
there are n, 1, 2, 3, 2, 2, 2, 1, 1 W-orbits of holes respectively in the root lattices A, 

Weyl group is extended by the symmetries of the Coxeter-Dynkin diagram, then the 
number of different types of holes in the root lattices A,, , (n  3 2 ) ,  D,, D,, ( 7 1  3 5 ) .  
and E, reduces to [(n + 1)/2], 1, 2, 1 respectively. 

We assume that the reader is familiar with the properties of root and weight 
lattices of the simple Lie groups, ~~ their classification, extended or alfine Coxeter- 
Dynkin diagrams, the affine Weyl group, etc. A basic reference is [ll]. 

In section 2 we recall some pertinent facts of the theory, setting up  the  notation 
and fixing the terminology. 

Section 3 contains the elementary examples of A,, E,  and G, of two-dimensional 
root lattices and serves to  orient the reader to the way in which we relate facets to 
decorated diagrams and to illustrate the concise way necessary to provide the infor- 
mation about the domains in the general case. The last example, C,, demonstrates 
how all details about the faces can be obtained from the classification that we provide 
here. 

Section 4 contains the theoretical justification of the method. Section 5 contains 

(n 3 11, B,,(n 2 21, c,,(n 3 3). D,,(n 2 41, E6, E,, E,, F4, and G2. I f  the 
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our results about the Voronoi and Delaunay domains in A,,, B,, C,, D,, E,, E;, 
E,, F4 and G,. The main results of the article are summarized in tables 4-12. 

In section 6 we briefly indicate how our method is applicable to generalized 
kaleidoscopes in spherical, Euclidean or hyperbolic spaces. We confine our discussion 
to a few examples. The generalization is fullly developed in a subsequent paper [12]. 
It provides a new proof of the classification described here which applies to any W- 
orbit of poinu in a generalized kaleidoscope and allows us to extend our results to 
include the classification of Voronoi and Delaunay cells of a!! the weight lattices of 
the semi-simple Lie group. 

After this manuscript was submitted we were made aware of 161. This paper 
contains a case-by-case description of the Voronoi and Delaunay cells of the root 
and weight lattices of A,,, D,, E,, E,, E8. It is, however, very different in spirit 
from our paper. The conclusions of [6] clearly reveal the unity of the description 
of Voronoi and Delaunay domains (and to a lesser degree their facets) in terms of 
Coxeter-Dynkin diagrams. However, the fundamental duality between facets and dual 
facets is not observed. Nor does the proof, which depends on explicit knowledge of 
each lattice individually, reveal the underlying unity. In particular the extension to 
other W-orbits in Euclidean and non-Euclidean spaces is not within the scope ol[6]. 

For convenience we summarize here our algorithm for classifying the Voronoi and 
Delaunay cells. 

we assume we have a root iaiiice Q generated by a root system A whose Coxeier- 
Dynkin diagram is called CD and whose Weyl group is W. 

(i) Dualize CD, form the extended dual CD, and redualize. Call the new diagram 
N and write the extention node as 0 (see the root lattice diagrams in table 1). 

(ii) At each step N is partitioned into two subgraphs 

.. . 

Nodes of are drawn as boxes, nodes of NGeYd are circles. N&? has d + 1 
nodes. The subgraph N&d is always connected and always contains 0. Every such 
partition describes a different d-dimensional face of V ( 0 )  and its dual of dimension 
n - d .  In spite what the notation suggests there may be several permissible partitions 
of N for a given d: These give rise to different W-equivalence classes of facets. 

(iii) Boxes which are not joined by an edge of N to any node of N G i d  are 
marked with a cross, x. 

(iv) The subdiagram stands for the properties of a d-face of the Voronoi 
cell V ( 0 )  and also its W-orbit. The d + 1 boxes of the N& stand for vertices of a 
d-simplex Sd (a d-face of the affine fundamental chamber) and the crosses in boxes 
stand for the reflections that generate the group of symmetries Gd (in the Weyl group 
W) of the d-face. The full d-face is the union of the images of Sd under Gd. 

(v) The subdiagram N;;,ld stands for the ( n  - d)-face of the Delaunay cell that 
is dual to the cell of Voronoi given by N&. In particular for d = 0, the subgraph 

contains a single box and stands for a vertex of V(O), while N& describes the 
corresponding Delaunay cell. 

(vi) When d = n, we have NCO, = N; all nodes are boxes and all but the 
extension node are decorated by the cross. The diagram describes inen the properties 
of the Voronoi cell V ( 0 )  centred at the origin (see table 1). When d = -1, we have 
N i i :  = N; all nodes are circles, only the extension node is dotted. The diagram 
describes the properties of the whole root lattice (see table 1). 
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Table 1. lattice diagrams with numbering of nodes, decorated diagrams of the Voronoi 
cell V ( 0 )  with marks and orden of lhe WqI gmup. 

Type Root lattice diagram V(0) diagram Weyl group . 
with numbering of nodes with marks order 

27345 
1 1 3 4 5  1 2 3 2 1  

E6 

A 2 1 0 3 4 5 7  
0 1 2 3 4 5 6  1 2 3 4 3 2 1  

E, 

*a 
0 1 2 3 1 5 6 7  1 2 3 4 5 6 4 2  

1 2 3 4 0  2 4 3 2 1  
F4 2'3' 

(vii) Lowerdimensional facets of V(O), their duals, and the multiplicities of 
their occurrence are determined by successively replacing boxes from A'& by circlcs 
(subject to the conditions (U) and (Ui)). If there are several choices for replacement 
of boxes by circles, each choice leads to a different W-equivalence class of facets and 
their duals. 

Moreover, the algorithm (i)-(vii) can be used to find the facets of facets of 
Voronoi and Delaunay cells and their multiplicities (see section 4.7). Onc simply 
applies the algorithm to the corresponding subgraph A'& or partitioning the 
subgraph into two parts (this requires a convention on how to draw two types of 
boxes or circles) subject to the requirements of the algorithm, etc. 

2. Notation and setting up the problem 

Let A = (Aij)lsi,k6,, be an indecomposable Cartan matrix, V and i/ vector spaces 
of dimension n over W, and and n are bases of V and V respectively, 

n = { q , a 2 , .  ..,an} fr = . . , &,}. (2.1) 
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There is a unique bilinear form 

(2.2) ( . , . ) :  V X V i R  

defined by 

(2.3) (a. & . ) = A . .  
I '  J I J  ' 

Let W denote the Weyl group of the Cartan matrix A. The group W is generated 
by its elements rt , . . . , r,, 

W = (TI , .  . . , r , ) .  

It acts faithfully both on V and V .  One bas 

p . a .  = a. - A . . a .  
S J  J 11 i 

r . & .  = & .  - A . . & .  
' J  J ' J  8' 

( 2 . 5 ~ )  

(2.56) 

Here ri is the reflection in the hyperplanes 

fi6, := {z E Vjjz,trij = 0j 

H a ,  := {z E V l ( a , , z )  = 0 )  

(2.Q) 

or 

(2.66) 

according to which side of ( .  , . ) we look at. 
The bilinear form ( .  , . )  is W-invariant: 

(wv,'wtJ') =(U,.') 

for all 'w E W, for all ( v ,  U') E v x V .  
The W-transforms of Il and li, 

A := WII and A := Wli (2.6) 

are the finite root systems defined by Il and n; II and iI are the corresponding 
simple roots. The unique positive definite symmetric W-invariant bilinear form, 

( . I . ) :  V x V - R  (2.7) 

on V is defined by the two properties 

The bilinear form (. I .) defines a Euclidean metric on V 
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relative to which each ri is an orthogonal reflection 
It is useful to fix, once and for all, a numbering system for simple roots. We 

adopt the Dynkin numbering which is shown in table 1 together with the orders of 
the Weyl groups. 

Using (. I .) we identify V and V so that 

2 a j  

iaj  i 0,) 
, - a;. 

In general, there is a bijection 

-: A-A 

that is W-invariant and satisfies 

2 a  m-& 

(2.10) . .  

(2.11) 

(2.12) 

under the isomorphism of V and i’. We define tr E V for all non-zero n E Q by 

Relative to n, the root system A has a highest root ( and a highest short root 
E.. (If A has only one root length then ( = tS). Then i and is are respectively the 
highest short root and the highest long root of A. 

(2.12). . .  

The lattices generated in V by A and A are 

(2.13) 

(2.14) 

m.L - ^ ^  .__ . .~~. .... ~ 

IIIC sewn6 equaimes are both weii known and easy to show. Both 8 and 8 are 
W-invariant. 

Our task is to describe the structure of the Voronoi cells of Q. By definition, for 
a E Q, the Voronoi cell V ( a )  around a is 

V ( a )  := {Z E V I 12 -a[ < IZ - 01, for all p E Q } .  (2.15) 

Obviously V i a )  = V ( 0 )  + a for all a E Q and V ( 0 )  is W-invariant. We 
wish to determine the W-orbits of the vertices, edges, 2-facets, ... , ( n  - 1)-facets 
of V(0) .  We will reserve the term ‘face’ for the ( n  - 1)-facets of V ( 0 ) .  We make 
the convention that facets are closed, so a facet contains various subfacets of lower 
dimension. We will see that our algorithm for extracting the information will begin by 
a description of the faces and work by descending dimension to the remaining facets 
As we have pointed out, the same Voronoi cells may be determined by different root 
lattices since it is only short roots that are involved. However, the Weyl groups are 
different and so we obtain different information about the symmetly of the facets by 
using different root systems. 
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An important cellular decomposition of V associated with the Voronoi cells is 
the decomposition into dual cells. If f is a facet of a Voronoi cell V ( p )  then the 
(metrical) dual f’ of f is the convex hull of the lattice points p E Q for which f is 
a facet of V(p) .  Equivalently, f’ is the convex hull of the lattice points p that are 
closest to f. We will obtain a description of the dual facets f’ simultaneously with 
that of the facet f .  

The extended Weyl groups are W K Q and W K Q, where the action of W on 
Q and Q are given by (2.5). me action of 

W, := W K Q (2.1Q) 

on V (which is the only one we have need of here) is given by letting Q act by 
translation on V: 

( w ,  q )  : x Y w x  + q .  (2.16b) 

The affine Weyl group W K Q is generated by rl ,  r2 ,  . . . , r,  and by an additional 
affine reflection 

To : I -  x +  ( 1  - ( x , & ) ) t s  

(2.17) 

Note that defining 

(2.18) - 
To: x - x - ( x , L ) t s  

we have q E W and 

r o q :  x H x + ts for all x (2.19) 

i.e. r,,q is the translation by <$ E Q. The region F, 

F := { x  E V I ( x , t r i )  > 0 , i =  1 , 2  ,... ,n, and ( x , & )  < I ]  (2.20) 

is a fundamenfal region for the action of W, on V. In fact [B, ch V, section 31 

(0  UWEW. w F  = v, 
(iij $ E F, E ;hen W %  E F w . - ~ 2  ~ I, 
(iii) if x E F then Stab W .  ( I )  is generated by the reflections in the walls of F 

containing x .  

Define the fundamental weighfs w,, w2 , .  . . , w, E V by 
(U. &.) = 6 . .  (2.21) :’ I $1 

and the weight lattice P, 
n 

P = cz.wi. 
i=l 

The coefficients {m,, m,, . . . , m,,] in 

(2.22) 

(2.23) 
;=1 

together with m, = 1 are the marks of the dual root system A. Their values are 
shown in table 1. For all i, we have mi E Z+. 
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Lemma 1. F is the canvex hull of 0 and 
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(2.24) 

Proof, {wl /m, ,wa/ma, .  . . ,U, fm,,) is a basis of V. Let x E V be written as 
2 = Cciwi /mi .  Then 

(Z ,h j )  2 0 Q cj 2 0 .  

We will be primarily interested in the boundary Fo of F, 

(2.25) 

0 

(2.26) 

It lies in the affine hyperplane 

Ho := {z E V 1 (x,&) = 1). (2.27) 

Given two subsets S and T of V, we say that S supports T (and T supports S) if 
the affine spans of S and T are equal. For example Fo and H ,  support each other. 

In terms of F we have the following description of V ( 0 )  due to Conway and 
Sloane [SI. We include a proof here because it is an essential step in our argument. 

Lemma 2. [5, ch 211 

V ( O ) =  W F : =  U wF.  
WEW 

(2.28) 

Proof, Let z E F. We claim that for all a E Q ,  151 < [x -al. 
Indeed, since whenever a reflecting hyperplane H separates z and a we have 

11 - vHal < 1" - ai, we can assume a E F. However, by (2.20), Q n F = {0}, so 
a = 0. 

Now let x E V(0). lb prove that z E W F  we may assume that T lies in 

c := {z  E v I (x, &;) 2 0 )  (2.29) 

which is a fundamental domain for the action of W on V. Then for all 13 E Q, 

14 s I= - PI * (z ,D) < 1. 
In particular, (.,is) < 1 z E F.  Thus V ( 0 )  c W F .  Conversely z E F * z E 

0 V ( 0 )  and so we see that W F  C V(0) .  
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A concise way to  provide essential information about V ( 0 )  is by means of the 

During the subsequent computations one frequently needs to use the following 
decorated diagrams of table 1. 

relations, 

a = A w e  ai = Z A i j w j  (2.30) 
- 

w = A-’a w; = L ( A - ” j i j a j  (2.31) 

riwk = w k  - 6 i k a k  i , j , k = 1 , 2  ,..., n (2.32) 

which are simple consequences of (2.5), (2.8), (2.10) and (2.21). The list of Cartan 
matrices A can be found in many places [11, 13, 141, their inverses are found for 
emmp!e in p j :  

The Euler formula [lo] which relates the numbers Nd of d-facets, 

* - I  

C N d = l - ( - l ) n  
d=O 

(2.33) 

offers a useful verification of our counting of the facets of Voronoi and Delaunay 
cells. 

3. Introductory examples: A*, B,, G, and C, 

In this section we consider two types of examples. The first are the tivo-dimensional 
root lattices of the simple Lie groups A,, B 2 ( Z  C2),  and G,. Their Voronoi domains 
are most easily described by simply drawing them (figurel) using only the definition. 
This elementary situation allows us to illustrate our concise notation for the same 
results; in particular, the two interpretations of the decoration of the diagram required 
for description of the facets and their duals. In each successive case we adopt more 
of the view point that is used in the rest of the paper. 

Our second type of example is C,. We use it also further on in section 4 and also 
in illustrating the generalized kaleidoscope in section 6. In this section its purpose 
is to explain how a description of the faces of the Voronoi domain V ( 0 )  and their 
duals is provided in our notation for a situation where the results cannot easily be 
obtained in another way, and how further details of the structure of the faces can be 
inferred from it if one desires. 

3.1. Example A, 
The vertices of V ( 0 )  (see figure 1) split into WO W-orbits. We provide a represcnt- 
ative of each orbit as the following decoration of the A, Coxeter-Dynkin diagram. 

The full set of V ( 0 )  vertices (0-faces) is then obtained by the action of (2.32) of IZ’ 
on the two representatives: 

w1 : r lwl  = -wl + w2 rZrlwl  = -w2 

w 2  : rzwz = w1 - w 2  r,r2w2 = -w,. (3.2) 
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“2 

Pigum 1. The rwts and the Voronoi domains V ( 0 )  cenlred at the origin or thc roo1 
lattices of the simple l i e  groups A2, Bz, and Gz. The circles denote roots. dolled circle 
i s  the origin, dotted boxes are venices of V ( 0 ) ;  oil and 02 are the simple roots; W I  

and w2 are the corresponding fundamental weights; T O ,  q, and r? indicate the broken 

anine Weyl gmup; the shaded triangle is the fundamenlal region; E or & is the highest 
short root; an open box indicates an auxilialy interior point of a lace of I/(  0 )  used in 
our description of the face. 

reflectinn !illCS mr !he ac!iQ!! nf !he ge!!Pm!ing C!PII?C!!!S @!SQ dP!!Q!Pd P^, r: , P:! of !!!e 

There is Gill)’ one W-orbit of the edges (1-faces) of V(0) .  We present it as thc 
decorated diagram 

w [ w l ,  w2] := line segment connecting w1 and w?. (3.3) 

The full Set of six 1-faces of V(0) is then obtained by letting the Weyl group act on 
[w1,w2]. More precisely, we find the following distinct 1-faces using (2.32): 

Q 

[w1,w21 TI[wl,w21 = [--U1 + w2,wzl  T2[W1>W21 = [ W l ’ W ,  -4 
~ 2 ~ 1 [ ~ 1 ~ ~ 2 1  = [-w2,w1 -w21 ~ ~ r ~ [ w ~ , w ~ 1  = [-wl +w2,-w11 (3.4) 

TlTZT1[WlrWZl = T2T1TZ[Wl>WZI = [-wz,-w11. 
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The dual of a face, given by the nearest point of the root lattice to the face, is 
visible on figure 1. In order to determine the dual of a vertex, say w1 (diagram (3.1)), 
one has to  use the reflection r,, specified by the node 0 of the diagram, and the 
affine reflection r, (see (2.17)) given by the node 0, and to apply them to the origin 
0. The dual face to w1 has as its vertices the images of 0 under the group generated 
by the two reflections: 0, r,O = = m1 + a2, and rzE = al. One finds similarly the 
dual of w, as the equilateral triangle [0, r,O,rlr,O] = [O,{, m2]. 

Similarly to get the dual of the edge [wlr w,] we apply the affine reflection ro 
corresponding to 0 to the origin obtaining lo,{]. 

3.2. Example B, 
The numbering of the nodes of the diagram 

o#) 
1 2  

stands for indexing the simple roots a,, a,, the fundamental weights wl, w,, and the 
elementary reflections r l ,  r,. 

There is only one W-orbit of vertices of V ( 0 )  (see figurel). We provide its 
representative point w, as the following decoration of the E, (equivalently C,) 
Coxeter-Dynkin diagram. 

m (3.5) 

The extension node 0 stands for the origin and for the affine reflection r, 
(see (2.17)). This diagram should really be thought of as two subdiagrams 

of0 and 0 (3.6) 

The box stands for w, (it is its position in the B, diagram). The full set of four 
vertices of V(0) consists of 

w2 rzwz = -w2 + w1 rlrzwz = w, - w1 rzrlrzwz = -w2 (3.7) 

as follows from (2.32). The dual cell to the vertex w, is described by the complemen- 
tary piece of the diagram, i.e. the first diagram of (3.6). This stands for the region 
(square) whose vertices are the translates by the group generated by r,, and r ,  ol 0 
(i.e. the origin 0): 

0 r,O = = al + a, r l& = a, roe, = [ = a, + 20,.  (3.8) 

This is confirmed by looking at figure 1. 
The edges of V ( 0 )  are represented by the decorated diagram 

which again may be thought of as 

(3.9) 

@ and (3.10) 

There are several new features here. The two boxes indicate that the edge is being 
made out of w1/2  and w,. (The fraction f here is important and we will explain 
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how it can be easily read from the diagram later. However, the boxes stand primarily 
for w1 and w z )  The cross indicates that reflection T~ must be applied to to fill 
out the edge, i.e. the edge is [w,, rzw2] which contains w1/2 as an interior point 
(actually the midpoint) as one can see on figure 1. The empty box standing for w1 /2 
indicates exactly that w1/2 is interior to the edge. 

The action of W on the edge [w2, 7 - z ~ z ]  according to (2.32) then provides all the 
1-faces of V(0) .  We have 
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[w21 7 - 2 4  = [wz>-w2 t U11 

7-1[wz>7-zwzI = [wz>~l7-2wZl = [wz,w*-w11 

7-z7-1[~z,~zwz1 = [7-2~2r7-27-17-ZwZI = I-wz t w 1 , - w z l  

7-17-27-1Iwz,7-2w21 = [~17-2wz17-27-17-zwzI = [wz -wl , -wz l .  (3.11) 

RI determine the dual facet to the edge [wz, r2w2] we turn to the complementaly 
diagram 0. It indicates that we apply the group { 1, v O ]  generated by vg to the origin 
GJ thereby obtaining [0,7-oO] = [O,c,] as on figure 1. 

3.3. Example G2 

We illustrate this example in terms of the algorithm and diagramatic notation that 
make up our general method. 

Beginning with 

of0 (3.12) 

(the numbers refer to the indexing of the simple roots el, az and fundamcntal 
weights wl.  wz and the reflections v1, vZ), we dualize the graph 

1 2  

(3.13) 0 

(3.14) 

indexing the new node by 0 and indicating it by the special symbol 0. 
We next 2-balance this graph [13]. This means assigning positive intcger marks 

mi,  i = 0, 1,2,  to the nodes subject to the following conditions: 
(i) For each i, mj / m i  = 2, where the sum is over all arrows (with multiplicity) 

from node j to node i. (Single bonds count as one arrow in each direction, the 
multiple bonds in (3.14) count as three a r row in one direction and one in the other.) 

(U) gcd{mo,ml,mz} = 1. 
Thus we have the unique 2-balancing 

@e-@ 
3 2 1  

Finally we redualize 

(3.15) 

cFm--@ (3.16) 
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The vertices of the fundamental simplex F which is used in the construction are given 
as 

(3.17) 

Our algorithm begins at the maximal dimension facets (faces) which in this case are 
the edges. We start with 

cB€F@ (3.18) 

indicating that we use the line segment 
[%,1] w 

3 2  
(3.19) 

and decorate the diagram to 

(3.20) Ixm3-e 
which we should think of as 

and @ (3.21) 

indicating, as in B,, that the edge is obtained from (3.19) by applying the reflection 
rl, and that w z / 2  is an interior point of the edge. In general, a cross is put in each 
box that is not adjacent by an edge of the diagram to any node 0 or 0. Thus we 
have the edge 

(3.22) 

and the remaining edges are determined by the action of the Weyl group elements 
(reflections) r1 and r, on this edge. 

As the dual to the edge (3.22) we have the 1-face determined by the complemen- 
tary graph which in this case is 0. Thus we get the edge 

[O, roo] = [ O , ( , ]  (see figure 1). 

To obtain the vertices of V ( 0 )  we replace by 0 in (3.20) any box not markcd by a 
cross (equivalently adjacent to a circle node). Here there is only one choice 

which we think of as 

0 and c)-o 

(3.23) 

(3.24) 

Thus the vertices of V ( 0 )  are the W-translates of w 1 / 3 .  The remaining five vertices 
of V ( 0 )  are obtained from w1/3 by the action of (2.32) of the Weyl group elements 
rlr  r z 2 ,  ~ - ~ r , r ~ ,  T ~ ~ ~ T ~ T ~  and r lr2r lr2~l  giving respectively -$wl + w?, { w l  - 
w,, - 5 ~ 1  + w 2 ,  f w l  - w, and -&. 

The dual cell to the vertex w 1 / 3  is the convex hull (triangle) of the three verticcs 

~0,~00,~,~001 = [ O , t , , a ,  + % I  
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3.4. Erample C, 

The Voronoi domain V ( 0 )  of the root lattice of the symplectic group C4 of rank 4 is 
the same as that of D, (the short roots of C, form a root system of type 0,). Thus 
we get the same classification of facets and dual facets from either starting point. 
There is a similar correspondence for C, and D, = A,. We do not dwell on this 
correspondence here since it is pointed out later for general n 2 4. 

section 1. The results for all C,,n 2 3, are given in section 5.3, table 6. The 
particular example of C, is used to illustrate the general development of the algorithm 
in section 4. The reader may wish to see how the classification goes in this case by 
skimming through section 4 at this point. Our aim here is limited to showing how to 
extract more information about the facets and their duals once the classification has 
been carried out (cf table 2). 
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TI.̂ ^^-^-^ ..*&..A c-.. ,.""-:I.:"" ,.c 2 r..,,. "-A 
IILC pacral ~iiruruu dc.uiwrig uI wm-3 auu b i ~ l s  ki \'(e) 5 giveii iii 

Table 2. Representative faces of the Voronoi domain V ( 0 )  (subdiagram of boxes) of 
the mot lattice C,, their multiplicities in V(O), and dual faces (subdiagram of circles). 

Face Diagram # 

"(0) 

%face 24 

2-face & 96 

I-face & 32 

I-face & 64 

a-face & 8  

0-face & 16 

There are two classes of vertices of V ( 0 )  in the case of C, 

& and & (3.25) 

The first diagram gives rise to a W-orbit of eight vertices generated from wl: 

w1 

r2rlwl = -w2 + w, 

rlwl = -wl i- w2 

r 3 r 2 r 1 1 -  w - -w, + w4 

r4r3r2rlwl = w, - W, = W2 

r2r3r4r3r2r1wl = w1 - w2 T1r2r3r,r3rzrlw1 = -wl. (3.26) 



Voronoi and Delaunay cells of root lattices 5103 

Similarly one finds 16 distinct vertices represented by the second decorated diagram 
for +w4. These are 

* fw4 * (w3 - 3w4) 

(-U1 + +U4) 

(U2 - w3 + $w4) * (w, - +U4) 

* (U, - U2 + i w 4 )  * (w, - w, - w3 - TU4) 1 (3.27) 

* (U1 - w3 + 4w4).  

The four-dimensional dual cells D ( w l )  and D ( f w 4 )  are represented by the sub- 
diagrams of (3.25) 

(3.28) 

Each stands for the convex hull of the orbit of the point indicated by the dotted 
circle (i.e. the origin here) by the group generated by the reflections corresponding 
to all the circles. This is the well-known Wythoff construction (see section 4.7). 

According to [lo, 11.71 these diagrams create the four-dimensional crosspolytope 
(generalized octahedron) and the half-hypercube (obtained by keeping only alternate 
vertices) respectively (see table 3). Explicitly, the vertices of the crosspolytope D(w,  ) 
are the origin 0 and 

roo = 

r2w2 = a, + a2 + 2 a 3  + a4 = w1 - w2 + w3 

r3r2w2 = al + a, + a3 + a 4  = w1 - w3 + w4 

r4r3r2w2 = a, + a, + a3 = w1 + w3 - w4 

r3r4r3r2w2 = a1 + a, = w1 + w2 - w3 

r2r3r4r3r2w2 = a1 = 2w1 - w2 

ror2r3r4r3r2w2 = 2 a 1  + 2 a 2  + 2a3  + a4 = 2w1, 

= w2 = al + 2a2  + 2a3 + a4 

(3.29) 

and for the half hypercube D ( i w 4 )  the origin 0 together with the following seven 
vertices 

roo = w, = a, + 2a2 + 2a3  + a4 
r2w2 = a, + a2 + 201, + a4 = w, - w2 + w3 

r2w2 = a, + a2 + 2 a 3  + a4 = w, - w, + w3 

r3r2w2 = a1 + a, + 2 a 3  + a4 = w1 - w3 + w4 

r1r2w2 = a2 + 2a3 + a4 = -wl + w3 

r, r3r2w2 = a, + 201, + a4 = -wl - w2 - w3 + w4 

r2rlr3r,w2 = a3 + a4 = -w2 + w., 

rorlr3r2w2 = -wl - w3 + w4. 

(3.30) 
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Tabk 3. Wythoff mnslruclion. Diagrams have n nodes with lhe exceplion of the last 
m. 

Diagrsm Nal"e Coxeter symbol 

(n+l)-simplex %+I 

n-ems? polytope P, 

n-cube % 

* ... * 
... 

0-0- ... 

& ... alternate vertices of an n-cube 

0 
n-cross polytope P. & ... -0-0 

& Cosset's 6-dimensional figure 221 

Cosset's 7-dimemioual semiregular figure 3,, 

?he 1-faces (edges) of V (  0) are classified by the two diagrams 

(3.31) 

The first gives rise to 64 W-translates of the representative edge [ w l , i w 4 ] .  The 
second diagram represents 32 translates of the edge [$w4,r4iw4],= [?wq,w3- 4w4]. 
Note that the first type of edge has its ends on different W-orbits while the second 
type has both ends in one orbit. 

& and & 

The dual faces of dimension 3 are regular tetrahedra C, whose vertices are 

0 F s  PZF. T372Fs (3.32) 

and 

0 F. r 2 E s  r1 T 2 F s  

respectively. 
There is only one W-orbit of 2-faces. 

(3.33) 

(3.34) -m . & - X 

These are aiangles, the representative one being the mnvex hull of [ w l ,  $w4, r4$w4]. 
The dual is the triangle whose vertices are [0, roo, r2roO]. 

Finally there are - the 3-faces all represented by the 3-face 

(3.35) 

In order to.find its vertices we use the stabilizer of the face, generated by the 
reflections rl, r,, r4 indicated by the crossed boxes of (3.35), on the representatives 
of the vertices ,iven- in (3.25). These are 

r lwl  = -wl + w2 ( 3.36) w1 
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r ' w  - L w  

r3r4$w4 = w2 - w3 + +w4 

r4r3r4;w4 = w2 - $a4 

4 2  4 -  3 2 4 
(3.37) 

of the octahedron. Its dual is the segment [ O , r o O ]  = [ O , c J .  
By continuing further changes in the decoration of the C4 diagrams, one gets 

from (3.35), as the next step, the diagram of V ( 0 )  shown in table 2. The symmetry 
group of the diagram, given by the crossed boxes, is now W (  C4). Similarly, we can 
go one step further in the opposite extreme replacing the single box in (3.25) by 0. 
The result is the diagram (see table 1) for the root lattice C4 generated from the 
origin 0 by the reflections T,,, vl, r2, T ~ ,  r4 applied to it. 

It remains to explain how one determines the number of faces given by a decorated 
diagram. It is equal to the size of the corresponding Weyl group orbit which is in 
turn equal to the ratio of the order of the Weyl group of C4 to the order of the 
stabilizer of the open boxes of the decoration. One reads immediately the necessary 
information from the diagrams: 

(3.38) 

(3.39) 

(3.40) 

(3.41) 

(3.42) 

(3.43) 

AI1 the Weyl group orders are found in table 1. 
Similarly we could have established the number of vertices of the four4Iimensional 

dual to the vertices of V ( 0 )  prior to the computation (3.29) and (3.30). Regarding 
the subdiagrams (3.28) of (3.25), we find the size of the W-orbit of 0 in each case: 

As the final part of the example let us ask the following question. Given a vertex, 
say wl ,  of V ( 0 )  of C4, how many 1-, 2- and 3-faces share that vertex? For that, 
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we need to apply the stabilizer of w l ,  which is the Weyl group W (  C,) generated by 
r2, r3, rq, to the representative face containing wI  (see section 4.6 for more details). 
Hence the size of the W (  C,)-orbit of the edge [w, , iw.,] is the ratio of the orders 
of respective stablien. 

R V Moody and J Patera 

(3.45) 

The second type of 1-face does not contain w1 as can be seen in (3.31). Similarly the 
numbers of 2- and 3-faces containing w1 are given by 

(3.46) 

(3.47) 

4. General structure of the Voronoi and Delaunay cells 

The Voronoi cell V(0) and its facets are determined by certain hyperplanes 

(I I a) = +(a I a) e (I,&) = 1 

(. I O )  < +(PI P )  - (.,D) < 1 

(4.1) 

and inequalities 

(4.2) 

where a,@ E Q \ { O } .  In particular, we note that any two distinct facets may be 
distinguished by the sublattice of points of the root lattice that are orthogonal to 
them. 

-.e ~"cvex se! '0 p - - ( q / m l  ,... ,W,,/?E~)~,,~~ & nart r--- nf -1 qnm,= I_...- (c  - !)-face 
f = f ( n  - 1) of V(0) .  Since V(0) = W F ,  the boundary of V(0)  is the union of 
the translates of Fo by W.  But Fo is supported by the hyperplane H ,  of (2.27) and 
now, using W, we see that the entire boundary of V ( 0 )  is contained in the union of 
hyperplanes 

{I E Vl(X,&)  = 1) 

where & runs through W i ,  = A, = set of short roots of A. 
This shows that in (4.1) and (4.2) we may restrict ourselves to taking a, p E A,. 
Thus each (n  - 1)-face of V(0) orthogonally bisects some line segment IO, e] 

where a E A,. This sets up a 1-1 correspondence between (n - 1)-faces and the set 
of short roots. 

Since for i = 1 , 2 , .  . . , n, 
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we see that f(n - 1) is the (n - 1)-face corresponding to cs, orthogonal to [0, tS] 
passing through &/2. The remaining (n - 1)-faces of V ( 0 )  are the W-translates of 
f(n - 1) and are in 1-1 correspondence with the elements of W/Stab,,,(f). But 
the stabilizer Stab,(f) = Stab,,, (its). 

is the highest short root, E,  is dominant and hence lies in the cone of 
(2.29). As we have seen C is the fundamental region of W and by using (2.20), 
(iii), we know that Stabw({./2) is generated by the reflections T; such that the wall 
defining it passes through (&/Z):  

Since 

Sta.b,(f) = (ri I i = 1 , 2 , .  . . ,n; (ai I E.) = 0). (4.4) 

The vertices of V(0 )  are the W-translates of the vertices of f. The vertices of f are 
translates by Stab,(f) of some of the vertices wi /mi  of F. Exactly which ones is 
part of the problem of describing V(0).  

We now explain how we use the ‘decorated’ Coxeter-Dynkin diagrams to describe 
the (n - 1)-faces and all the lower dimensional facets of V(0) .  We illustrate this as 
we go along by the example of V ( 0 )  of the root lattice of C,. In this example we 
thus determine the content of table 2. 

Consider the Coxeter-Dynkin diagram of C,: 

(4.5) o-eG=” 
4.1. Determination of the short roots and the marks 

Dualize the diagram (4.5) and make the usual affine extension of it. The result is the 
affine diagram EY).  

(4.6) 
1 2 2 2  

The extension node is shown as 0. The marks written on the E$’) diagram (4.6) 
are the coefficients of the highest root of E4 (i.e. is of C,) and are determined by 
2-balancing of the graph (131 (see also example G, of section 3). 

Redualizing the diagram (4.6) while retaining the marks at the nodes gives us 
(3 v 

d H x c  
1 2 2 2  

(4.7) 

and the fundamental region 

of C4 which lies inside the cone (2.29). 
The extension node plays a different role from the other; and so is designated 0. 

This becomes clear when we discuss the dual cells. The usual conventions of angles 
and lengths conveyed by the extended Coxeter-Dynkin diagram are applicable here 
both to the affine simplex F in which each node corresponds to one reflecting wall 
of F (0 corresponding to H,) and to the simple roots a,, . . . ,a, and the lowest 
short root -&. 
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4.2. Dererminarion of fhe (n - l)-faces of V ( 0 )  

Replace each node 0 (which represents a simple root) by 0 which in the j t h  position 
of the diagram represents w,/mj.  Thus from (4.7) we get 

R V Moody and J Patera 

(4.8) 

This diagram stands for the (n - 1)-face f(n - 1) determined by 

t~l/ml,...3~n/m,,~. 

As we saw, the face f is stabilized by the group generated by the reflections pi for 
which (aiIES) = 0. This information is read directly off the diagram where it is 
indicated by marking the appropriate boxes: 

Note that the cross refers to the reflection T; while 0 refers to wi /mi .  The number 
of .?-faces h. this euamp!e is thus given hy the ratio (3:43) of the Wey! group ordcrs. 

Obviously the symmetry group Gn-I of f in W is Stabw(f):  in this case 

G"-I E W ( A , )  x W(B,) .  (4.10) 

We observe that it may happen, as it does here, that only one box, say the ith, 
is unmarked. In this case the reflections T~ in the n - 1 marked boxes reflect Fo in 
n - 1 independent directions in V, namely those determined by the corresponding 
simple roots aj, while holding w i / m i  fixed. Thus the point w i / m i  is an inlcrior 
point of the face f (in fact its centre). In particular, w i / m i  cannot then be a vertex 
of V(0) .  

4.3. The IC-facets of V ( 0 )  

We may now assume that n > 1. A Mace  j(kj of dimension k of VjOj  is 
determined by a set of equalities and inequalities of the form (4.1) and (4.2), where 
a,P E A,. Using W we can assume that f(k) n Fo supports f (h ) .  Then we may 
even assume that a,@ E A:. For 

~.~ 

0 < C i < l  0 < d j  < mj c c i  = 1 

we have 

Therefore 

C i d i  - 
mi 

(I,&) = 1 Q c- - 1 

(4.11) 

(4.12) 

(4.13) 
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which, together with ci = 1, gives 

(I,&) = 1 * (3, &) = 1 whenever ci > 0 (4.14) 
mi 

and hence f( k) n Fo is 

(4.15) 

(Recall that the facets are closed.) This proves the following lemma. 

Lemma 3. For any k-facet f(k) of V ( 0 )  whose intersection with Fo support-r it, 
f(k) n Fo is the convex hull of some subset 

{ $ I i € S )  S C { 1 , 2  ,... ( n). 

Continuing with the facet f = f(k), we proceed to determine its dual j(k)*. Set 

(4.16) 

Then 

f' = f(k)' = (q  E Q I f is a facet of V(q))conv.  

V ( q )  3 f - V ( q )  2 fo. 
Of course, 

Since the chambers making up V ( 0 )  are 

{wF I w E W )  = {wF I w E W,, W O  = 0) 

the chambers making up V ( p )  are 

{ W F  I w E W,,  w(0) = q l .  

In particular, there is a w E W, such that 

w(0) = q wF 2 fo. 
Then w- l f ,  and fo are both facets of F. According to (2.20) 

(i) w fixes fo pointwise; 
(ii) w is generated by the reflections in the walls of F which contain fo. 
The walls of F containing fo are 

(see (2.17)). Thus w lies in the subgroup 

!,va,s := (To,?, I j 4 '). (4 17) 

Conversely, elements of Wa,s clearly pointwise fix fo. and hence f .  Thus 

f c V ( q )  e=, 9 E Wo,S(O). (4.18) 

Lemma 4. The facet f(k)* dual to f(k) is the convex hull of W,,s(0), where S is 
given by lemma 3 and W,,,s by (4.17). 
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Lemma 4 describes f ( k ) ' ,  in terms of the Wythoff construction [5, IO]. See 
section 4.7 for more details. We are going to see (see the remark later) that 

S' := {<*)U {a j  1 j 6 S }  (4.19) 

is connected (i.e. the subdiagram of the Coxeter-Dynkin diagram corresponding to 
this set is connected. 

Assuming this, we can determine the stabilizer of f(k) in W,: 

W,' := Stabwa(f(k)) 

Each facet f(k) has a centroid (centre of mass) that is in the relative interior of 
f(k). 

Let c be the centroid of the facet f(k). Then for w E W,, 

w E w,' * wc = c.  ( 4.20) 

But 

f(k) = U wfo 
W € W !  

and it follows from (4.20) that c E fo C F. Thus using (2.21) 

W,' = ( T .  I j = 0,1,. . . , n; c lies in the reflecting hyperplane of T ~ ) .  

Furthermore, 

(4.21) 
I 

w E W,' t) w stabilizes f( k)' 

=) w stabilizes the real linear span 

(Wa,S(O)h = (Wa,S(iJB = E R & ;  + Ri, =: L (4.22) 
;*s 

by the assumption. Thus w E W,' implies that w stabilizes L. Now W,' is generated 
by the reflections T; of (4.21) and from (4.22) we have for j = 1 , 2 , .  . . , n, 

r; E w,' 3 rj L = L 
(4.23) 

* a j  E L  or aj I L .  , 

Thus 

w,' = w,' x wz 
where 

(4.24) 

W,' := (ro,rj I ~ r ;  E L )  

W z  := (rj I uj I L )  

(4.25) 

(4.26) 



Voronoi and Delaunay cells of root lattices 5111 

and furthermore 

wf := wnw,' = w' x w 2  
where 

w1 .- .- ( T j  I fij E L). 
Suppose that c a r d s  > 1 (i.e. k > 1).  Then 

So we have the neater prescription 

w,' = (TO' Pi I i e S) 

(4.27) 

(4.28) 

(4.29) 

w 2  = ( r i  \(ai 1 aj) = o = (a; 1 i,),j 4 S) 

W' = ( T i  1 i e S). 

(4.30) 

(4.31) 

If c a r d s  = 1 then S = { p } , f ( l )  = { w p / m p )  and W,' = ( r o , r j  I i # p) = 
W,' x W z  when W: and W z  are given again by (4.29) and (4.30). Thus 

Lemma 5. Let f be a k-facet supponed by its intersection f, := f n F ,  with F, 
given by (4.16). Then 

Stab,(f) = W: x W 2  

Stab,(f) = W' x W 2  

where w;, w 2 ,  W' 
o f f  in w is W ' .  

giver! by (4.29)-(4.3?). n.c. pain&.& S!&j!jZ$T St&!../ I " \ ,  f) I 

4.4. Derermination of the ( n  - 2)-fuces of V ( 0 )  
Consider now the determination of the (n - 2)-facets of V(0) .  Designate such a 
facet by f ( n  - 2)  and assume that f(n - 2 )  fl Fo suppors f(n - 2). By lemma 3, 

A 3) 
) . . . )  ,..., ( 2  mp " CO"" 

f ( n - 2 ) r l F 0 =  (4.32) 

indicating that the vertex w p / m p  of Fo is omitted. Note that then f( n - 2)  fl F, c 
H-, n Ho. 

Hnwever, if bOY p is m&ed with I CTOSS, !he!! TP stabi!izes f = f(.- - I )  end 
so H a p  n H, passes through the interior of f(n - 1) (figure 2). In other words, 
H a p  n H, cannot support an ( n  - 2)-facet of f( n - 1 ) and so w p / m p  is not suitable 
for removal. 

Conversely, since Ha, n Ha does support a facet of F,, the only reason that it 
can fail to support a facet f(n - 2) is if it passes through the interior of f( 11 - 1). 

fact that if z E F then 
ma meaii3 f(z - 1) CGBtBi"4 poists ox both sides cf Km,. k t  we have the gesca;! 

(4.33) w E (Ti I i = 1,. . . ,n; i # j )  * ( w z ,  ' l j )  > 0. 
It follows that r, 
box j is marked with a cross. Thus we have the following lemma. 

involved in 'filling out' f(n - l ) ,  i.e. r j  stabilizes f( n - 1) and 
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, % 
Figure 2. The plane H,, passing through the interior of a facet. 

A Lemma 6. ( w l / m l , .  . . , w p / m p , .  . . ,w,/m,) supports an (n  - 2)-face iff box p is 
unmarked. 

In our C, example, we have only one possibility: 

& 
corresponding to 

( yl, w3,"") 
2 2 Con" 

(4.34) 

Continuing from lemma 6, since the rest of this ( n  - 2)-facet lies in f(n - I ) ,  
we must determine the subgroup G of S tahw(f )  that stabilizes f ( n  - 2). Using 
S = {l, . . . , n}\{p} and lemma 5 ,  

Stah,,,(f(n-2)) = W' x W 2  

so that 

G = (7; I i = 1,.  . . ,n ,  (a; I is)  = (a; I hP) = 0). (4.35) 

In our example we have the 2-facet given by the diagram (3.34) and again in tablc 2. 
Again the information on the stabilizer of the facet has been read directly from the 
diagram. 

4.5. Determination ofthe ( n -  k)-faces of V ( 0 )  

We determine (n  - k)-faces inductively from the ( n  - k + 1)- faces. The procedure 
is precisely the one used earlier to determine the ( n  - 2)-faces. 

Each ( n -  k +  1)-face, call it f(n- k +  l), of which there may be more than one 

is then represented by a decorated Coxeter-Dynkin diagram in which one indicates: 
.ui,der v",, ;j iepiaei,ted ai posic,oi, .wiieie ii k jiippaiie(j *y a fZiZi b-o, :i 

which w;/m; are used; 
which Weyl subgroup stabilizes it. 

The explicit procedure consists of the following: 
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(i) A subfacet f( n - k) of f( n - k + 1) is determined by removal of an w; /ini, 

(ii) The new marking is determined from the old marking by removing the marks 

The arguments are trivial modifications of those already used for the (n - 2)-  

In our C, example, we thus find the two Weyl group orbits of 1-faces (edges) of 

the only condition being that this is unmarked by cross. 

from boxes which have edges joining the newly deleted node. 

facets. 

V ( 0 )  listed in table 2. 

Remark Since the only boxes that may be deleted are those which are not marked 
and since these are precisely the boxes which are connected to the subdiagram of 
'deleted' nodes (i.e. those shown as 0 in the diagram), we see inductively that the  
subdiagram of deleted nodes is connected. This justifies (4.19). The rule for deleting 
nodes is preciseiy equivaient to: 

A box may be deleted if and only if it is connected to the subdiagram of previously 
deleted nodes. 

'Ib continue our example, we get the 0-faces of V ( 0 )  shown in table 2 

4.6. Inclusions of facets 

Let f be a k-face. Let n > m > k. We wish to understand the collection of nz-faces 
f such that f 3 f .  For this purpose we may assume that fo := f n Fa supports f .  

Suppose that f 2 f. Then f is some union of WO-translates of some nz-face g 
of F (actually of Fo) and so there is a w E W such that f 3 wg 3 fo. Thus some 
subfacet f; of g satisfies wf; = fa and since f; and f, both lie in F, fi = fo and 
w pointwise fixes fo. Thus h E Stab,(fa) = S t a b z ( j ) ,  .f' := w - ' i  3 g, and 
f' f l  Fo supports f'. Thus we have the following lemma. 

Lemma 7. If f is an m-face containing a k-face f where f n Fo supports f, then 
f is a translate by an element of Stab: (f) of an m-face fi where n Fo supports 
f'. The set of m-faces containing f is 

stab,tf)t l ' ) .  (4.36) 

Suppose that 

Then by lemma 5, 

Stab:(f) = W' = ( n l k  6 S) .  (4.38) 

be an m-face containing f which, according to lemma 7, we can suppose Let 
to satisfy 

(4.39) 
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where S’ 3 S, cards‘ = m + 1. Then the set of all m-faces containing f in the 
W-orbit of m-faces generated by f is 
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Fi,, := wlf. (4.40) 

We have 

S tabw(f )  = W’ x W2 

:= (rk I k e 5’’) 
W 2 : = ( r 1  [ ( a i  I a j ) = o = ( i . I a j ) , i 4 s ’ ) .  

cardF,,,, = [W‘ : W ’ n ( W ’  x W’)]. 

From (4.40) 

(4.41) 

Since for any two subsets IC, L c { 1, . . . , r }  

(rl I j E K ) n ( r j  I j E L )  = (rj I j E I tn  L )  (4.42) 

it is trivial to compute (4.41). Some examples in the case of C, are given at the end 
of section 3. 

4.7. Dual cells 

According to lemma 4, if a facet f(k) of V ( 0 )  is supported by the set 

(4.43) 

then f ’ ( k )  is the convex hull of 

W,,do) = (r0, pi I i E S)(o). (4.44) 

This type of prescription for construction of a polytope is called by Coxeter the 
Wythoff construction. 

The construction is symbolically presented by the Coxeter-Dynkin diagram of 
the reflection group W,+ with the node for the reflection ro specially markcd (we 
use a centre dot 0). This marking indicates that the vertices of f ’ ( k )  all lie on 
one W-orbit and that the generating point lies on all the reflecting mirrors of the 
fundamental region except the zeroth, i.e. in this case the point 0 is the origin 0. 

Suppose we have given a connected decorated diagram N of (l.l), describing a 
d-face f ( d )  by N& and its (n  - d)-dimensional dual f’(d) by, N i Z d .  

For example in (3.28) we have N& for either of the two Delaunay cells of the 
vertices wl, and f w 4  of V ( 0 )  of the C., root lattice, the full diagrams are in (3.25). 

We wish to describe the facet structure of the dual f’(d) of f(d). For this 
purpose we consider the subgraph N;-d of NE;’, 

N;-d O $ j < n - d  (4.45) 
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where is connected, contains a, and a total j nodes. It represents a W-orbit 
of j-dimensional subfaces of f ' ( d ) .  

In our example the dual cell to the vertex f?, is given by lemma 4 as the 
second diagram of (3.28). In table 2 we supply the identification of these polytopes 
as provided in [lo, section 11.71 and [5, ch 211. In this example let us describe the 
facets of the half-hypercube of each type. The admissible subgraphs of the diagram, 
indicated by open boxes, are the following 

& & & & & (4.46) 

In the present case we are considering the convex hull of the origin 0 by the group 

W , = ( T Q , r l , T 2 , T 1 ) =  w(D,) .  

The stabilizer of 0 is generated by the reflections of W., whose hyperplanes pass 
through 0: 

(TI 9 TZ 7 ~ g )  W( 4).  (4.47) 

- I ne number of Uf ihe ~ a i f ~ ~ y p e r c u ' i e  is 

(4.48) 

The edges are the W(D,)-orbit of the representative edge [O,roO] = [O,(,]. Its 
stabilizer is generated by re and those reflections T ;  of W, whose hyperplane passes 
through the edge; i.e. precisely those which are orthogonal to the hyperplane for 'v0: 

( T p 0 3 T 1 3 T 3 )  W(A, X AI X '1). 

The number of edges of the half-hypercube is 

(4.49) 

Similarly the 2-faces are W (  D,)-orbits of [0, roo, rZroO] and whose stabilizcr is 
generated by ( ro ,T2)  rr W(A,) and those reflections ri of W(D4)  (in this case 
none) whose hyperplanes contain the face. 

Tke aumher nf 2-f2ces % 

The 3-faces are of two kinds (relative to W,): 

These are 3-simplexes and give rise to 

(4.50) 

(4.51) 
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3-faces of each type. Similarly for the other set of holes 
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(4.52) 

we have the four-dimensional cross-polytape (p4) with the following numbers of 

(4.53) 

(4.54) 

(4.55j 

(4.56) 

In this example it happens that p4 and hy, are the same, although we note that 
the group of symmetries in the second case is twice as large and is able to fuse 
the two orbits of 3-faces. For C,, n > 5 ,  the duals of the two types of holes are 
genuinely different. For an alternative proof of the results of section 4 see [12]. 

5. Classification of Voronoi and Delaunay domains 

In this section we present the results of an application of our method described 
in section 4 to the root lattices of types A,(n > l), B, (T I  2 2). C,, ( 7 1  2 3),  
D,, ( n  > 41, E,, E,, E*, F4, and G,. 

5.1. The root lattice A,, 

An application of the method described in section 4 to the d-faces of V ( 0 )  of the 
root lattice A,, , n > 1, yields the results summarized in table 4. 

In this case 

[ = [* = a1 + a, + . . .+  a, = w1 +w, 

and consequently all the marks mi are the same, mi = 1 for 1 < i < n. The boxes 
of a decorated Coxeter-Dynkin diagram stand for the corresponding fundamental 
weights. 

In general, there are n - d different types of d-faces of V(O), each typc is 
represented by one decoration shown in table 4. 

The n different types of 0-faces (vertices) are represented by the fundamcntal 
weights wj, j = 1 , 2 , .  . . , n. The number of vertices of type w j  is equal to the size 
of W-orbit containing w j ,  namely 



Voronoi and Delaunay cells of root lattices 

Thblc 4. The representative facg of V(0) of the root lattice A,,  n 2 2. and their 
duals. 

5117 

Fece Diagram Number of fwes 
dimension 

"-1 

n-2 

n-2 

d 

d 

d 

d 

2 

2 

2 

I 

I 

I 

0 

0 

0 &...A 
Consequently, the total number No of 0-faces of V ( 0 )  of A, is given by 
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A generic d-face is given by the diagram 

x ... * ... ... a (5.3) & ::: -0-O-D- - - 
k d+ 1 n-k-d-1 

where 0 < k < n -  d -  1 and 0 < d < n -  1, n > 1. The number of faces of this 
t ~ n e  ir dven hv 'JY- " J 

The total number Nd of d-faces of all types is thus 

= ( n: ') ( 2 n t l - d  - 2 ) .  
( n  + I)! 

n-d-1 

( k + l ) ! d ! ( n -  k - d ) !  N d =  
k=O 

(5.5) 

Finally let us verify the validity of the Euler formula (2.33) for A,,. Substituting (5.5) 
for Nd in (2.33); we have the identity 

The properties of Delaunay domains of A, and their faces are similarly read 
from the table 4. For every vertex wk of V ( 0 )  we have its dual D ( w k )  of dimension 
n. The subdiagram of circle nodes of the diagram of wk has the structure 

... ... -0-0 
k-1 k-2 1 0 n n-1 k+Z k + l  

(5.7) 

(here we 8:: shwi!Ig the n!"eriag e! the nodes). The kt!! node k the box whir!! 
was deleted. The symmetly group in W, of D ( w k )  is W(A,) generated by the 
reflections indicated by the nodes of (5.7). The number of vertices of D ( w k )  is the 
size of the W(A,)-orbit of the node 0: 

According to section 4.7. the edges of D ( w k )  are W(A,) conjugates of the one 
containing 0, namely [ O , T ~ O ] .  Its stabilizer is W(A,-, x A, x An-k-,). Hcncc 
D ( w k ) ,  k 3 2, has the following number of edges: 

(5.9) 

Even for D ( w l )  we find that (5.9) with k = 1 gives the correct number of edges, 
namely (":'). 
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Table 5. The representative faces of V ( 0 )  of the root lattice E,,  n > 2. and their 
duals. 

Dingram Number of fares Face 
dimension 

~ 

n- 1 m 2n 

n-2 ... m 2Il(n-1) 

5.2. The root latfice B, 

The method of section 4, applied to the B,, n 2 3, case gives the diagrams summa- 
rized in table 5. 

The highest short root of B, is 

cs = CYl +a,+ . . .  + a, = w,. (5.10) 

The marks mi are found from the dual Coxeter-Dynkin diagram to B, which is the 
C, diagram, &" being its long simple root. The highest long root of C, is 

n 

Hence the boxes of the decorated diagram stand for 

WlL-1 w, 
_.- w1 w2 

2 ' 2 ' ." '  2 ' 1 '  
_ _  

i ~ 

(5.12) 

1 
The Voronoi cell d(0) is a hypercube. All d-faces are of one type. Their number I .  . Nh JS given by 

The Euler formula (2.33) in this case is easily verified using (5.13): 

(5.14) 
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lhbk d ?he representalive faces of v(0) of the mol lattice C., n 2 3, and their 
duals. 

Face Diagram Number of faces 
dimension 

2 & .. 0 2" (2) 
2 & . .  X Y  20-2 (5) 
1 & ... 2"n 

0 &+ ... 211 

0 o_g, ... 2" 

1 Q.&+ ... 2% 

The Delaunay domain D(w,) of the B, root lattice is also a hypercube. Its 
symmetry group in W, is W (  E,) generated by T ~ ,  0 < p < n - 1. It has 

vertices represented by 0, 

edges represented by [ 0 ,  ~ ~ 0 1 ,  

(5.15) 

(5.16) 

(5.17) 

2-faces represented by the triangle (0, roo, T~T,,O], etc. 

5.3. The root lattice C, 
The application of our method to C,, n 2, gives the results summarized in table 6. 
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The highest short root is 

and 

E, = L=q + 2 6 ,  + 2k3 + . . . + 2kn . (5.19) 

Therefore the boxes of the decorated Coxeter-Dynkin diagram denote the points 

The fundamental region F given by its vertices is thus 

wn F =  @,A, 2, -2 -). 
1 2 2 ? . " '  2 

w w w  

(5.20) 

(5.21) 

Among those only w1 and w,/2 are the vertices of V ( 0 ) .  

n -2,  and two types of face for0 < d < n -3. 

from the two types of face, treating the case d = 0 separately: 

The Voronoi domains of C,, have one type of face of dimensions d = n - 1 and 

In order to determine N, for 0 < d < n - 3, we have to add up contributions 

(5.23) 

The numbers Nn-l and Nn-l  are found as follows: 

(5.25) 

Finally let us verify the validity of the Euler formula in the present case. For that 
we substitute (5.22)-(5.25) into (2.33). We have 

( ) +(-1)"-'22 ( ) 
n - 2  n - 2  + (-1)n-223(n - 2 )  

= 1 -(-I)%. (5.26) 
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There are two types of Delaunay domains of V ( 0 )  of C,, root lattice: D(w,/2) 
and D(wl). These are the half-cube hy, and the cross polytope 0, respectively (see 
table 3). Their symmeq groups in W, are respectively 

W(D,)  = ( T O '  Tl ,P21  . . . 1 Tn-J 

W ( C , ) =  ( T ~ , T ~ , T ~ , . . . , T , ) .  (5.27) 

They have 

vertices (cf (3.30) and (3.29)), 

(5.29) 

edges, etc. 

5.4. The root lattice D, 
The results of our computation of faces of V ( 0 )  for D,, n 2 4, are shown in table 7. 

In the present case we have 

F = ts  = i. = wz = 0 1  + 2 0 ,  + 20,  + ( ( (  + 2an-, + 
Hence the boxes of the decorated diagram denote the points 

+a,. (5.30) 

and the fundamental region F is given by its vertices as 

(5.31) 

(5.32) 

Among these only wl, wny1 and w, are also vertices of V(O), representing the three 
Weyl group orbits of vertices of V ( 0 ) .  

The Voronoi domains of the D, root lattice have one type of face for dimensions 
n - 1 and n - 2, two types of face for dimensions 2 < d < n - 3, and three types of 
face of dimensions d = 1 and 0. 

The total number of vertices of V (  0) is given by 

- 2n + .y, - 

The 1-faces of V(O), given by their vertices, are the following three 

1 9 2  %-ll Iw13 w,l lwn-l, 4. (5.34) 
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Table 7. The representative facm of V ( 0 )  of the roof lallice D,, n 3 4, and their 
duals. 

Diagram Face 
dimension 

11.1 ... -ux, 
n-2 & &  
0-3 &. .& 

n-3 & ... ug, 
d ... Y ..-E& 

d A..- ... A 
3 & . &  

3 ... +&@ 

2 & .  

2 & ... & 
1 & ... & 
1 &+ ... & 
1 &+ .., & 
0 & &  
0 A.& 
0 &+ ... & 

Number of face 

Their numbers in V ( 0 )  are equal because their stabilizers are isomorphic to 
W(An-* ) .  One has 

(5.35) 
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For 2 < d < n - 3 the number of d-faces Nd is a sum of two terms 
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(5.36) 

Finally for Nn-l and Nn-z we have 

C:nm thn ohnrr *fin+* nf P fnrm o -nrr+ r . r ~ + a m  rrf n i n ~  n +ha I n + + : m c  nf t x r n -  
"U,_ ,MU Y.I"IL .""LO "L vn L" . I I I  m l""L .,JYL'... "L LJYU Y" ,  ,,.U l"". . Y L L . I I Y  "l L J y u  

C,, and D, are equal. It is therefore no surprise that the numbers Nd coincide. 
4 )  : D ( w , ) ,  

D(U,,-~), D(w,). ?tu0 are half-cubes hy, and one is the cross polytope p,. Viewed 
in C, the two orbits of half-cubes are fused into one orbit, as we have seen. 

There are three orbits of Delaunay domains in V ( 0 )  of D,(n 

5.5. Tire root iaitice Z6 
Our results concerning the faces of V ( 0 )  of E,  are found in table 8. 

In this case 

( = (  = (  = a1 + 2 a z  + 3a.9 + 20, + 015 + 2 0 6  = ~ 6 .  (5.38) 

The boxes of the Coxeter-Dynkin diagram decoration therefore stand for the points 

w1 w Z  w4 w5 "6 - - _ _ _ _  
1 ' 2 '  3 ' 2 '  1 ' 2 '  

The vertices of the fundamental region are 

w w w w w w  F = ( O  2 9 3 -5 2%) 
' 1 ' 2 '  3 ' 2 '  1 '  2 

(5.39) 

(5.40) 

Among them w1 and w5 are also vertices of V(0). 
The Euler formula is readily verified. Indeed, one has from table 8 

N o  + N2 + N4 = NI + N3 + N5 = 2934. (5.41) 

The Delaunay domains D(wl) and D(w5) of V(0)  differ by the automorphism 
of the diagram. They are copies of Gosset's polytope Zz1. We consider only one of 
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Table 8. me representative faces of V ( 0 )  of the rwt lallice E6 and their duals. 

Diagram Number of faces Face 
dimension 

5 

4 

3 

2 

2 

1 

1 

1 

0 

0 

verifying (2.33): No + N z  + N4 = N ,  + N3 + N 5  

5.6. The root lattice E, 

Bble 9 contains the representative faces and the number of times they occur. 

(5.42) 



and 

(5.43) 

(5.44) 

(5.45) 

The V ( 0 )  vertices split into two W-orbits represented by w6 and w 7 / 2 .  
The Euler formula is verified directly using Nd of table 9 

No + N 2 +  N4+ N ,  = NI + N 3 +  Ns  + 2  = 26966.  (5.46) 

The two Delaunay cells of V(O), D(wG) and D ( w 7 / 2 )  are very different. D ( w G )  
is Gosset’s polytope 3,,  and D ( w 7 / 2 )  is an 8-simplex. Their symmetry groups are 
W{E77) r3d W ( A , )  respective!y. G3se!+w!y, we find 

(5.47) 

etc. 

5.7. The root lalfice E, 

Table 10 contains our description of V ( 0 )  faces of all dimensions and their multiplic- 
‘ities. 

For E, we have 

E = E. = i, = 2 a 1  + 3 a 2  + 4a3+ 5 a 4  + 6 0 ,  + 4a, + 2 0 ,  + Sa, = w I .  

Therefore the boxes of the diagram stand for the points 

(5.48) 

w1 - - w2 - w 3  - w4 - w5 - w7 - w8 - 
2 ’  3 ’  4 ’  5 ’ 6 ’  4 ’  2 ’  3 

(5.49) 

and they together with the origin are the vertices of F. 
Checking Euler’s formula by the entries N ,  of table 10 gives the following 

No + N 2 +  N 4 +  N ,  = N ,  + N 3 +  N , +  N7 = 751920.  (5.50) 
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Tabk 9. ' n e  representative faces of V ( 0 )  of the root lattice Er and their duals. 
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Face Diagrmn Number of faces dimension 

The Delaunay domains D(w, /2)  and D(w,/3) of V ( 0 )  of E, are the 8-  
cross polytope and the 9-simplex respectively with the symmetry groups W (  Da) 
and W(A,). Consequently, we find the following numbers of d-faces of D(w,/2) .  

N - IW(Q3)I - , R  ,v - IW(D,)I = , , r )  

N -  IW(D,)I =448  N -  IW(Dd)I = 1120 

N 4  = Iw(mI =896 N5 = IW(D,)I 

IW(Q3)I - 256 

" O  - IW(0,)l - L" " I  ~ IW(A, x D6)l 

- IW(A, x D5)1 - lW(A, x o,)/ 

= 89G 
IW(A4 x A3)l 

IW(Dd)I = 1024 

JW(A,  x A, x A , ) \  

(5.51) 
Iw(A7)I - 

N, = 2 
IW(A,)I 

N6 = 

verifying (2.33). Similarly for D ( w 8 / 3 )  we have 

N -  IW(A,)I for0 g d <  7. (5.52) 
- IW(Ad X A7-d)l 

Because Nd = N,-,, (2.33) holds. 



5128 R V Moody and J Patera 

a b l e  10. The representalive faces of V ( 0 )  of lhe ml latlice Ea and lheir duals 

Face Diagram Number of faces 
dimension 

7 2‘ 3 5 

6 2‘357 

5 26 33 5 7 

4 28 33 5 7 

3 29 33 5 7 

0 2’ 33 5 

0 2d 33 5 

5.8. The root lattice F4 
%bIe 11 contains our results concerning the faces of V ( 0 )  of the root lattice of F4. 

In the case of F4 we have the highest long, and the highest short roots respectively 
given by 

Dualization of the diagram produces the dual F4 with long simple roots d4 and ii3 
and short simple roots ~5~ and The highest long root of P4 is 

is = 2&, + 3&, + 4&., + 26,. (5.54) 

Therefore the boxes of the decorated diagram denote the points 

and 

(5.55) 

The vertices of V ( 0 )  all belong t o  the single W-orbit represented by the point w4/2 .  
Validity of Euler’s formula is evident from the last column of table 11: 
In this case we have D(w4/2) which is the 4-cross polytope with the symmetry 

group WC4). 
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Table 11. The representative faces of V(0) of lhc mot lattice Fa and their duals. 
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Diagram Number of faces Face 
dimension 

3 2'35 

2 f J C . 7  

1 26 35 5 7 

0 28 33 5 7 

F 0 T h o  mnt Inttiro II 
- 2  ".,. -,.- ."". .-...-. 

The pertinent results in this case have already been presented as part of an example 
in section 3 (cf figure 1). We add the same information here in the form of table 12 
for completeness and uniformity of the presentation of our results. 

For G, we have 

,s t - -  - - 1  L?,. T '-2. (5.56) r = 7 -  1 7 -  , - 1 - 1  I U", 

The G, diagram is self-dual, i.e. a dualization produces G,. Its long simple root 
is &, and the short simple one is The highest long root is now 

is = 2e2 + 3&, . (5.57) 

Consequently the boxes of the Coxeter-Dynkin diagram are the points w,/2, w1 /3, 
and F = (0, w 2 / 2 ,  4 3 ) .  

Table 12. The representative faces of V ( 0 )  of the root lattice Gz and their duab. 

Face Diagram Number of faces 
dimension 

1 lxeaz-3 6 

0 CMFC 6 

The Delaunay cell D(w, /2)  has the symmetry of W ( A , )  and 

(cf figure 1 and (3.24)). 

6. Generalized kaleidoscope 

The solution to determining the Voronoi cells of a root lattice consists of describing 
the fundamental chamber of the affine Weyl group W, = W K Q by its Coxeter- 
Dynkin diagram and determining the rules by which the diagram is decorated into 
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two subdiagrams representing respectively a IC-face of the Voronoi cell and its dual 
(n - IC)-face. The dual faces are described using the Wythoff construction on the 
corresponding subdiagram. The root lattice Q itself can be viewed as an extreme case 
of the Wythoff construction when the entire Coxeter-Dynkin diagram is used for this 
purpose. 

We can interpret the Coxeter-Dynkin diagram and the fundamental chamber as 
simply giving the reflecting hyperplanes for the generating reflections of W, together 
with the angles between them. In general, a collection of reflecting hyperplanes which 
are situated so as to have all their mutual angles of intersection as submultiples of II, 
say r / m i j ,  mij  E E,, i , j  E {l, 2 , .  . . , n}, i # j ,  is called a generalized kaleidoscope. 
It can be represented by a Coxeter diagram, very much as before [C]. We introduce 
one node for each mirror and join nodes i and j by an edge overmarked with the 
number m..(= m..). If m. .  = 2 we discard the edge, and in the case mij = 3 we 
usually omit the marking. This leads us to generaiize the situation at hand in two 
ways simultaneously: 

(i) We may replace the Euclidean (or affine) kaleidoscope by any other, providing 
that it is a bounded simplex F of spherical, Euclidean, or hyperbolic geometry. 

(ii) We may choose the special node of the corresponding Coxeter-Dynkin at will. 
Denoting by W the group generated by the reflections in the walls of F and the  

vertex of F corresponding to  the special node by v,,, we define the discrete set of 
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!J 11 ‘ J  

points 

Q : =  Wv,, 

Then Q plays a role analogous to the root lattice Q and we may consider its Voronoi 
regions (clearly all W-translates of each other), the facets of the Voronoi region, 
and the corresponding Delaunay cells and their facets. Remarkably the method wc 
have described above works without any change in this new situation, except that the 
vertices of F can no longer be given using a system of marks { m i ) .  

Here we confine ourselves to a few examples that illustrate some of the possibili- 
ties. By redefining the Voronoi cells in a way avoiding the metric, we can develop a 
theory that applies to any generalized kaleidescope and to any W-orbit of the Tits 
cone X. It is then possible to classify the facet structure of the Voronoi cells and 
their duals by a scheme of decorations of the Coxeter diagram that is a simple and 
natural generalization of the scheme developed here. The more general setting leads 
to an entirely different exposition of the classification. Details appear in [12]. 

6.1. A hyperbolic kaleidescope 

Suppose we have given the diagram 

This represents the kaleidoscope generated by reflections in a triangle whose interior 
angles are x / 4 , 1 1 / 6 ,  1112. Such a triangle exists only in the hyperbolic plane. The 
fundamental region F and some of its reflected images are shown in figure 3. We 
consider the set of points Q given by 



Voronoi and Delaunay cells of root lafrices 5131 

Figure 3. The kaleidoscope of section fi.1 is a tesselation of the hyperbolic plane by 
IpRp*tp,i im*(.- .+ - lia""lp ..Anrp """1.. .... ~ - 1 9  - 1 "  - I C  r.. .L̂  ..""..."a:-" .-.."-.-" .".Ye- "L - ' 8 .  '..&.* "ll"".. a,,g,u a.- ", 1, >,,I, ",U. 111 L l l F  'cp"uc""L'"" 

of the hyperbolic plane s h w n  here the outer circle is the absolute circle at infinity and 
lhe geodesics are a m  of circles anhoganal to the absolute. Only a small pan of the 
tesselation, which has infinilely many cells, is shown. 

This means that we select the vertex vo of F corresponding to thc dotted node and 
apply to it the entire reflection group. 

The Voronoi region is then the hexagon 

on figure 4 with edges and vertices and their duals given by the diagrams 

m w  
as illustrated in figure 4. 

6.2. A spherical kaleidescope 

Consider the diagram 

m. 

&RJ-&@ 

The full reflection group W here has order 14400 [lo]. For the set Q we take 

. .  ... L I _ L  .._. !... .c 1 1  ann, . - -  .*n --:-.- ~ .L̂  ..--.!--" ^ C  .LA I ,  I~ WIllCn W O S I S t S  U1 144WllLU =ILU pUIUL> UJIIIpIWll lg  LIIC VCILILCS UI LllC W e l l  KnOWn 
600 cell in 4-space. We view this as a tesselation of spherical 3-space. The Voronoi 
region V for Q is 
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Flgure 4. Voronoi and Delaunay cells of the hyperbolic kaleidoscope of section 6.1. The 
orbit under the reflection group of the centre p i n t  (indicated by open circles) gives rise 
to the typical Vomnai region shown as the hexagon in light shading. The quadrangle 
indicated by the dark shading is a typical Delaunay cell of maximum dimension. 

with facets and duals given by the diagrams 

wM 5 5 

Using the fact that the reflections 

generate a group of order 10, and counting the facets as before yields 

120 
No = - = 20 - 30 

120 N 120 N 2  = - = 12 
10 I -  2 . 2  3! 

from which it is obvious that V is a regular dodecahedron. The dual cells are all 
simplexes of various dimensions. 

6.3. Tic7 c, .k!eMescepes 
Finally let us consider two examples of type C, in which we assign the special role, 
indicated by the dotted circle, to different nodes of the diagram. We take 

h 

The structure of the corresponding Weyl groups, given by the subdiagrams of 
nodes without the dot, is W (  A, x A, x C,)  and W (  A, x A I ) .  As the diagrams of 
the Voronoi domains we thus have respectively 
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Table 13. Representative faces of Vomnoi domains V of the two kaleidoscope of seclion 
6.3, their multiplicities, and dual faces (subdiagram of circles). 

# 

1 

8 

4 

4 

8 

2 

4 

4 

4 

2 

? 

2 

I 

12 

6 

24 

12 

8 

8 

4 

4 

2 

Using the same strategy as before, we find the representatives of W-orbits of 
fzzs, ;ac& iiiu:tip:ic~ies, aiid <aa;s aiia:ogous io tiiose sho.wm in ia+$e 2, .ge hove 
put together these results in table 13. 

One may have noticed that we have, in fact, already considered kaleidoscopes 
with special nodes elsewhere than on the extension node. Indeed, these were the 
cases where we were interested in the structure of Delaunay domains or  facets of 
facets (see, for example, the diagrams in (3.28) and (5.7)). 
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